
Real-Time Query Systems for Complex Data
Sources

A dissertation presented

by

Ian Thomas Rose

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May 2011

c©2011 - Ian Thomas Rose

All rights reserved.

Thesis advisor Author

Matt Welsh Ian Thomas Rose

Real-Time Query Systems for Complex Data Sources

Abstract

This dissertation presents techniques for building scalable systems that allow real-

time querying of complex data sources. In recent years, networking and sensing

advances have dramatically increased the volume of information available to data

consumers. However, coping with large scales and high data rates often requires

processing data in real time, as it arrives, rather than storing it for later analysis. Our

thesis is that by including the data acquisition process in the overall system design,

it is possible to build scalable, real-time stream processing systems for complex data

sources.

We have built two systems to demonstrate a number of unique design features

required for scalable operation in our chosen domains. Cobra is a system that taps

online RSS feeds (such as blogs, news articles and websites’ user comments) as its

data source. Cobra repeatedly crawls a set of RSS feeds, matching the contents to

keyword-based user queries, similar to those used in Web search engines. As RSS-

based content can change frequently, the design ensures that the latency between

crawls is low, while still scaling to a large number of RSS feeds and many concurrent

user queries.

Secondly, Argos is a system for widely-distributed, outdoor wireless network mon-

iii

Abstract iv

itoring. Capturing 802.11 WiFi traffic across a large urban area, Argos enables a

wide range of user queries, such as mobile node tracking, malware detection, and

traffic characterization. Use of a wireless mesh network to connect the deployed snif-

fer nodes introduces additional challenges due to its limited bandwidth capacity. To

address this restriction, we designed a novel in-network packet merging process and

demonstrate its bandwidth savings. Additionally, Argos provides a variety of channel

management schemes; 802.11 defines up to 14 radio channels but each sniffer can only

capture from one channel at a time, necessitating policies for when to capture from

which channel.

These systems are built around three design principles that aid in the real-time

querying of complex data sources: query interfaces tailored to the application’s spe-

cific data types, optimized data collection processes, and allowing queries to provide

feedback to the collection process.

Contents

Title Page . i
Abstract . iii
Table of Contents . v
Acknowledgments . viii
Dedication . x

1 Introduction 1
1.1 Stream Processing Engines . 1
1.2 Challenges . 3
1.3 Dissertation Summary and Contributions 4
1.4 Dissertation Outline . 7

2 Background and Related Work 8
2.1 A Taxonomy of Streaming Solutions 9
2.2 General Purpose SPEs . 12

2.2.1 Aurora . 13
2.2.2 TelegraphCQ . 15
2.2.3 Borealis . 16
2.2.4 STREAM . 18
2.2.5 System S . 18
2.2.6 Summary and Limitations . 19

2.3 Domain-Specific SPEs . 25
2.3.1 Example 1: TinyDB . 25
2.3.2 Example 2: Gigascope . 27

2.4 Other Query System Architectures 28
2.4.1 Traditional Distributed Pub-Sub Systems 28
2.4.2 Web Search Engines . 32
2.4.3 Content-Delivery Networks . 34
2.4.4 MapReduce-related Systems 35

2.5 Network Monitoring and Measurement 36
2.5.1 Wired Network Monitoring . 37

v

Contents vi

2.5.2 Indoor WLAN Monitoring . 39
2.5.3 Wardriving Studies . 41
2.5.4 Wireless Sensor Networks . 41
2.5.5 Mesh Network Measurements 42

2.6 Summary . 42

3 Cobra Architecture 44
3.1 Introduction . 44
3.2 Cobra System Design . 46

3.2.1 Crawler service . 48
3.2.2 Filter service . 49
3.2.3 Reflector service . 50
3.2.4 Hosting model . 53

3.3 Service provisioning . 55
3.3.1 Service instantiation and monitoring 59
3.3.2 Source feed mapping . 60

3.4 Implementation . 62
3.5 Summary . 63

4 Cobra System Evaluation 64
4.1 Properties of Web feeds . 66
4.2 Microbenchmarks . 67

4.2.1 Memory usage . 67
4.2.2 Crawler performance . 69
4.2.3 Filter performance . 71

4.3 Scalability measurements . 72
4.4 Comparison to other search engines 78
4.5 Comparison to Prior Work . 79
4.6 Summary . 80

5 Designing and Measuring an Outdoor Wireless Testbed 81
5.1 Motivation . 81
5.2 Architecture . 83
5.3 Urban Deployment Considerations . 86

5.3.1 Physical environment . 87
5.3.2 Network Coverage . 89
5.3.3 Network Security . 90

5.4 Network Measurements . 90
5.4.1 TCP Throughput . 91
5.4.2 Ping Latencies . 94
5.4.3 Implications for Applications 95

5.5 Summary . 98

Contents vii

6 Argos Architecture 99
6.1 Introduction . 99
6.2 Background and Motivation . 101

6.2.1 Why Argos? . 102
6.2.2 Challenges . 103

6.3 Argos Architecture . 105
6.3.1 User Queries . 105
6.3.2 Sniffer Nodes . 107
6.3.3 In-network Traffic Processing 109
6.3.4 Protocol Stack Emulation . 114
6.3.5 Sniffer Channel Management 115

6.4 Example Query: Stolen Laptop Finder 117
6.5 Implementation and Deployment . 118
6.6 Summary . 119

7 Argos System Evaluation 120
7.1 Performance Evaluation . 120

7.1.1 In-network traffic processing 121
7.1.2 Coordinated channel focusing 124

7.2 Urban Wireless Traffic Characterization 127
7.2.1 Overall network population 128
7.2.2 Spatial coverage . 129
7.2.3 Traffic capture coverage . 130
7.2.4 Discussion . 133

7.3 Case Studies . 135
7.3.1 Popular Websites and search patterns 136
7.3.2 Malicious traffic . 136
7.3.3 Tracking public transport services 138
7.3.4 Wireless client fingerprinting 140

7.4 Summary . 142

8 Discussion and Future Work 144
8.1 Generalizing Cobra and Argos . 144
8.2 Future Work . 146

9 Conclusions 149

Bibliography 151

Acknowledgments

Firstly, I’d like to thank my advisor, Matt Welsh. I’ve followed a bit of a me-

andering road in grad school, and Matt deserves much credit for where I am today.

I am grateful for his guidance in the various skills of a computer systems gradu-

ate student: designing systems, interpreting data, writing papers, and, ultimately,

conducting meaningful research.

A debt of gratitude is also owed to Radhika Nagpal, who patiently advised me

throughout my first 2 years as I struggled to define my research interests. Radhika

provided my first opportunities at finding open research problems, reading and writing

papers, and being in a research group.

I also thank Margo Seltzer and Jim Waldo for serving on my thesis committee.

Both provided valuable feedback and guidance during the writing process. Addi-

tionally, both of their classes were influential in eventually steering me towards this

dissertation topic.

I have had the pleasure of working with many other graduate students through

the Syrah, CitySense and SSR research groups. Rohan Murty, Ankit Patel and Julius

Degesys, in particular, shared many late nights in the lab with me and I am glad

to call them friends and colleagues. I am also indebted to Nick Feamster and his

research group at Georgia Tech, which has been my academic home-away-from-home

for the past two years.

Many thanks go to my parents for supporting me all these years and for instilling

in me a love of learning at a young age. To Allison, for moving with me up to

Cambridge so I could start this journey; for bravely slogging through many of my

paper drafts and talk rehearsals; for letting me go to a conference in Zürich just 3

viii

Acknowledgments ix

weeks after our second son was born; and for her love and support every single day.

Finally, to our boys, Will and Henry, for lending me perspective, and reminding me

of the simple pleasures of the life.

For Allison and our boys, Will and Henry.

x

Chapter 1

Introduction

In the past decade, dramatic increases in both the amount of data produced by

computer systems, as well as the availability of high-speed networks to access to this

data, have lead to fundamental changes in how many users interact with data. Now,

users frequently demand analysis of data as it arrives, rather than storing the data

for later analysis. This need can arise due to application requirements or simply as a

means of contending with an otherwise unwieldy volume of data. Real-time querying

of the data in this fashion requires fundamentally new architectures to effectively

support complex analyses over large numbers of diverse, high-volume data sources.

1.1 Stream Processing Engines

One approach taken by many real-time query systems is to model the incom-

ing data as one or more continuous (effectively infinite) data streams and perform

real-time analysis on this data in the form of one or more long-term user queries ;

1

Chapter 1: Introduction 2

such systems are commonly referred to as stream processing engines (SPEs). Re-

cently, SPEs have been successful in a great variety of application areas, including

financial market processing [10, 37], battlefield monitoring [37] and network traffic

analysis [61, 135]. In some cases, these systems are purpose-built for a single domain

(e.g. Tribeca [135] for network traffic analysis), while other systems are designed as

general purpose systems (e.g. Aurora [51]).

The benefits of general purpose SPEs are obvious: the effort put into building the

system pays off manyfold whenever it is reused in a new area. Nonetheless, system

requirements for some applications make it infeasible to use general purpose SPEs,

necessitating specialized solutions. The current crop of general purpose SPEs work

well when (a) the individual data elements can be naturally represented as tuples

consisting of common primitive data types1 and conforming to a consistent schema,

and (b) the data collection process is relatively simple or can be abstracted away

into a separate system. For example, a general purpose SPE could be used for a

stock tracking application which receives trade notifications of a fixed structure (e.g.

〈stockPrice, sharePrice, volumeOfShares〉) over a TCP socket.

However, for many data sources one or both of these criteria are not met; for

example, a network monitor may operate on packets of many different network pro-

tocols (violating the consistent schema requirement), or a low-power wireless sensor

network may require custom, or even query-specific, techniques to retrieve data in a

power-efficient manner (violating the simple/separable data collection requirement).

We refer to these kinds of data sources as complex data sources, since they require

1e.g. character strings, integers, floating point values

Chapter 1: Introduction 3

special handling that general purpose SPEs cannot provide.

1.2 Challenges

Both general-purpose and domain-specific SPEs face two universal challenges:

providing an effective query interface and achieving high scalability.

• Effective Query Interfaces: SPEs must provide some kind of interface for

users to express their desired query logic, oftentimes in the form of a query

language such as SQL. Designing this interface is difficult due to two competing

goals: the interface should be user-friendly and accessible to as wide an audience

as possible, but also should be expressive and powerful enough for users to fully

express their desired query semantics.

• Scalability: SPEs are commonly expected to scale over a variety of dimensions.

Early on, systems were primarily concerned with supporting high incoming data

rates and large numbers of concurrent queries [51, 56]. Increasingly, however,

SPE designs now must support large numbers of data sources, possibly dis-

tributed over a large geographic area, such as may be the case when reading

from a wireless sensor network [54, 96].

Clearly there are no simple, one-size-fits-all solutions to either of these challenges;

often, application-specific solutions are required. This is particularly true in query

systems for complex data sources. Returning to our prior examples, network moni-

tors may require specialized query interfaces tailored to network traffic analysis, and

systems reading from wireless sensor networks may require specialized protocols or

Chapter 1: Introduction 4

algorithms to extract data in a way that respects the sensor nodes’ limited battery

power and radio bandwidth. Nonetheless, we have identified three design principles

for building scalable, effective query systems for a variety of complex data sources:

query interfaces tailored to the application’s specific data types, optimized data col-

lection processes, and allowing queries to provide feedback to the collection process.

In this dissertation, we present two systems that demonstrate these techniques in

concrete situations and draw some generalizing principles.

Effectively, these techniques delineate the specific areas where general-purpose

SPEs can fall short of meeting the needs of systems that query complex data sources.

In Chapter 8 we speculate on the future of general- vs. special-purpose SPEs and the

degree to which general purpose SPEs may be augmented so as to avoid a proliferation

of “one-off” special purpose SPEs.

1.3 Dissertation Summary and Contributions

This dissertation makes the following contributions:

Cobra: A Content-based Filtering and Aggregation System for Blogs and

RSS Feeds. Cobra is a query system that allows users to specify keyword-based

queries and then receive a personalized RSS feed updated with matching entries

(e.g. articles or blog entries) from across thousands of websites. The system design

maximizes the number of content sources (crawled URLs) and user queries, while

minimizing the update latency (time elapsed between the posting of new content and

its delivery to users) and the hardware resources required.

Chapter 1: Introduction 5

Although Cobra’s query interface – a boolean expression over keywords – is some-

what limited in expressive power, it is familiar to web users, since this is the interface

used by most search forms (e.g. web search engines, product searches on e-commerce

sites). As Cobra’s initial goal is to support only filtering and aggregation so as to cre-

ate personalized RSS feeds, this seems to be a reasonable tradeoff. Additionally, this

restricted interface allows Cobra to use optimized text-matching algorithms, which

greatly increases the number of concurrent user subscriptions (queries) that Cobra

can support.

Cobra detects updated content by repeatedly fetching monitored URLs. Since

most page fetches are redundant (the content hasn’t been updated since the last

fetch), Cobra takes pains to avoid downloading and processing stale content wher-

ever possible, using both HTTP- and RSS-specific techniques; this reduces the load

imposed on content servers, as well as Cobra’s bandwidth requirements and compu-

tational load.

CitySense: An Urban-Scale Wireless Sensor Network and Testbed. City-

Sense presents users with two opportunities: the ability to evaluate wireless protocols

and systems in a complex, “real-world” urban setting (which is near-impossible to

replicate fully in simulation or synthetic testbeds), and access to the many sensing

opportunities in this environment. A variety of mesh networking projects have given

insight to the performance of 802.11 in complex urban settings, but do not allow for

external experimentation. CitySense uses a dual-radio design so that experimenters

can try out new protocols on one radio without disrupting mesh connectivity to nodes

Chapter 1: Introduction 6

on the other radio. In many cases, CitySense nodes are accessible solely via the wire-

less mesh and thus maintaining reliable connectivity is vital.

Additionally, CitySense provides access to a diverse collection of data sources. En-

vironmental scientists, for example, may be interested in air quality or micro-climate

data, whereas social scientists might make use of records of human movement pat-

terns. Argos (below) is, in fact, an unorthodox kind of sensing application that uses

the experimentation radio of each node as a “sensor”.

Argos: An Outdoor Wireless Network Monitor. Argos is a query system for

capturing and analyzing ambient wireless traffic over large, outdoor, urban areas.

To achieve the geographic distribution required for wide-area, outdoor monitoring,

Argos is designed to run over a network of sniffers inter-connected by a wireless

mesh network. In many urban settings, this approach enables long-term monitoring

of thousands of wireless networks with only a few tens of sniffer nodes. However,

this sparseness also introduces a number of new challenges, such as the bandwidth

limitations imposed by mesh connectivity and low packet capture rates.

Argos is based on the Click [86] networking toolkit, augmented with various cus-

tom operators designed for handling and analyzing wireless packets (especially merged

packets, a concept specific to wireless monitoring). User queries are structured in a

way that allows Argos aggregate packets within the sniffer network, and then per-

form much of each query’s work directly on the sniffer nodes, significantly reducing the

bandwidth required for data collection as compared to running all queries centrally.

Queries are also able to change the 802.11 channel of sniffers’ capture interfaces.

Chapter 1: Introduction 7

This is important since radios can tune to only one channel at a time, but most

applications are interested in monitoring traffic from all eleven2 802.11 channels, and

thus some kind of channel-management policy is needed. Although a hard-coded

policy could be built into Argos itself, we instead expose this functionality in the

query interface to allow query-specific policies.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 motivates

the need for real-time query systems and reviews prior and related work in this space.

Chapters 3 and 4 present the architecture and evaluation of Cobra, a system for real-

time querying of large numbers of RSS feeds. Chapter 5 describes our work designing

and deploying the CitySense network, and presents some measurements to character-

ize the overall network performance. Chapters 6 and 7 present the architecture and

evaluation of Argos, a system for monitoring the wireless traffic across a large, urban

area. Chapter 8 discusses open issues and offers some potential directions for future

work. Lastly, Chapter 9 concludes.

2The number of 802.11 channels various by specific protocol and country; there are eleven
802.11b/g channels allowed in the U.S.

Chapter 2

Background and Related Work

To motivate the need for real-time query processing in many modern applications,

consider that the NASDAQ electronic stock market routinely handles over 70,000

transactions (orders, cancellations and trades) per second1. Not only are financial

applications growing increasingly sophisticated, but strategies such as high-frequency

computational trading (which typically requires very rapid responses to market condi-

tions, sometimes on the order of milliseconds) are leading to formidable performance

requirements.

Social networking is another area where real-time query processing is becoming

popular. Twitter is one of the current heavyweights in this area, with nearly 200

million registered accounts and 140 million messages (tweets) posted per day2. This

volume of user-generated content presents an exciting new opportunity for a wide

variety of data consumers. Researchers have used Twitter to track flu epidemics [90],

1As of December, 2008 [70].

2March, 2011. [114].

8

Chapter 2: Background and Related Work 9

detect events (e.g., earthquakes) in real-time [125] and monitor the uptime of popular

web services [104]. Sales and marketing professionals use Twitter to follow current

trends and fads [115]. Social scientists are interested in how people use Twitter and

what kinds of interactions take place via it.

As a final example, consider monitoring network traffic on a high-bandwidth In-

ternet backbone link. Caida’s3 real-time Internet traffic monitor for two OC192 links

(between Seattle, WA and Chicago, IL and between San Jose, CA and Los Angeles,

CA) shows that each averages several Gb/s of continuous traffic. Calculating even

simple summary statistics is challenging at these speeds; Caida in fact relies on a

sampling method they developed [67].

The common thread between these application scenarios is their analysis of real-

time, high-volume streams of data. “Traditional” system designs based on saving the

incoming data for later processing often encounter difficulties storing and managing

the total volume of data being received and are also unable to provide real-time query

results, which are vital in some scenarios (e.g. stock trading).

2.1 A Taxonomy of Streaming Solutions

Before considering specific systems in detail, it is useful to consider how the related

work generally fits within a common design space. We find the following dimensions

to be useful for this comparison, although these are certainly not the only options:

• Query flexibility measures how flexible a system’s query interface is, ranging

3http://www.caida.org/

Chapter 2: Background and Related Work 10

(A)

(C) (D)

(B)

Static Data
Schema

Flexible Data
Schema

Expressive
Query

Interface

Limited
Query

Interface

CDNs

Topic-based
Pub/Sub

Web Search

Content-based
Pub/Sub

Cobra

Argos

TinyDB

General-
Purpose

SPEs
Gigascope

Figure 2.1: Summary of related streaming query systems.

from highly expressive, enabling a diverse variety of queries, to highly restricted,

allowing only a narrow range of query options.

• Schema flexibility measures whether a system requires that input data conform

to a static, pre-defined schema, or whether the system can operate on less

structured data (such as unstructured text).

Using these criteria, the design space can be partitioned into four general regions,

as diagrammed in Figure 2.1. These regions are as follows:

(A) Limited Query Interface & Static Data Schema: Content-delivery net-

Chapter 2: Background and Related Work 11

works (CDNs) and topic-based publish-subscribe (pub/sub) systems offer nar-

row access to their content; these two categories of systems require that con-

sumers provide unique content identifiers (e.g., URLs) and the choice of one

or more pre-defined topics, respectively. Note that although the content itself

need not conform to any particular schema, the only fields actually queryable by

these systems (i.e., a document’s unique identifier or its attached list of topics),

do conform to specific data schemas. Thus, these systems are properly classified

in the “Static Data Schema” region.

(B) Limited Query Interface & Flexible Data Schema: Web search engines

and CDNs often handle largely the same kinds of content: web documents. The

fundamental difference in their query interfaces is that CDNs can only address

documents by identifier (URL), whereas web search engines support querying

over the documents’ content (and possibly other fields, such as author or title).

Analogously, content-based pub/sub systems support querying over the content

of stored documents, while topic-based pub/sub systems select documents based

solely on their topic identifiers. Cobra also falls into this area of the design space

since we chose to focus only on content filtering (which requires a fairly simple

query interface) instead of more general purpose querying.

(C) Expressive Query Interface & Static Data Schema: General-purpose

stream-processing engines (SPEs), as well as some domain-specific SPEs (such

as TinyDB), provide highly flexible query interfaces that can be used to imple-

ment complex analyses. The tuple-processing operators built into their query

interfaces are fundamentally designed to operate on simple, fixed-schema tuples.

Chapter 2: Background and Related Work 12

(D) Expressive Query Interface & Flexible Data Schema: A number of

domains require expressive querying over content that does not easily conform

to simple, static data schemas. Although both of the examples cited here (Argos

and Gigascope) operate on network packets, other domains may fall under this

category as well, such as XML document processing or some scientific computing

applications.

In the remainder of this chapter, each of these systems are described in further de-

tail, with particular emphasis on the query interface/model used and the requirements

placed on the input data.

2.2 General Purpose SPEs

To address the challenges of real-time querying, one approach has been to de-

sign general-purpose stream processing engines (SPEs) that can adapt to a variety

of application domains. The database community, in particular, has produced a

variety of designs, including (but not limited to) Aurora [51, 37], Borealis [54], Tele-

graphCQ [56], and STREAM [105]. There are also some commercial offerings, such as

StreamBase [5] (which grew out of Aurora/Borealis) and System S from IBM [33, 75].

See Babcock at al. [36] for a general survey of stream processing, including a discussion

of some of the work cited here.

The typical model for these systems is to accept one or more queries, which are

compiled into a query plan consisting of a graph of operators. Data streams are

assumed to consist of tuples that conform to a fixed schema of common primitive data

types. Typical operators manipulate individual tuples (e.g., discard or modify them

Chapter 2: Background and Related Work 13

according to some criteria), manipulate entire data streams (e.g., split one stream into

many or merge many streams into one), or calculate aggregations over some window of

data (e.g. every X tuples, or every Y seconds). Each query specifies an output, from

which results are returned to the user in some way. Some queries may simply produce

a subset of the input data (e.g., “return all temperature readings above 100 degrees”),

while others may produce aggregations over the data (e.g., “every 30 seconds, return

the max and average of all temperate readings from the past 30 seconds”).

For brevity, we discuss only two of the above systems in detail, followed by a

summary of the particularly notable features of each of the remaining systems.

2.2.1 Aurora

Query Model: Aurora queries are specified directly as a “boxes and arrows”

dataflow graph consisting of operators (boxes) connected by implicit packet queues

(arrows). Aurora contains built-in support for seven operator types, such as fil-

ter, which drops tuples that fail to meet some criterion, merge, to combine multiple

streams into one, and map which applies some user-defined function to each tuple.

One unique feature is the ability to specify connection points which are bounded

storage locations within the network. For example, if a query contains a “1 hour”

connection point, then data up to 1 hour old will be continually buffered at that

location. Aurora supports adding ad-hoc queries to a system while it is running; if

an ad-hoc query is attached to a connection point, the query can make use of the

buffered data to provide (limited) query results over past data.

Static Optimizations: Before running queries, Aurora performs a number of

Chapter 2: Background and Related Work 14

static optimizations to improve runtime performance. Firstly, Aurora strips out un-

needed attributes as early as possible. For example, if a data stream consists of

〈time, temperate〉 tuples, but the time attribute is never accessed in the query, then

transforming this stream into a stream of 〈temperate〉 tuples as early is possible is ad-

vantageous (e.g. any buffered tuples require less storage). Secondly, Aurora combines

adjacent operators where possible, since fewer operators makes for fewer tuple trans-

fers and simpler scheduling decisions. Lastly, Aurora examines the estimated cost and

selectivity of operators (both assumed to be known a priori) and reorders operators

where appropriate. For example, it makes sense to put a low-cost, high-selectivity

operator before a high-cost, low-selectivity operator (assuming they commute, which

not all operators do).

Runtime Operation: Aurora’s runtime duties primarily consist of scheduling

operators to run and resolving system overloads by shedding load (dropping tuples).

Scheduling consists of selecting which operator should run, and how many tuples it

should process before yielding control back to the scheduler. For some operators, pro-

cessing multiple tuples all in a row (train scheduling) is more efficient than processing

each tuple in isolation – at the very least, train scheduling reduces the overhead of

the scheduler since fewer scheduling decisions are made. Thus, the scheduler tries to

take into account the size of each operator’s input queue. The scheduler also tries to

satisfy each query output’s QoS priorities. For example, a query might prioritize low

latencies at the expensive of delivery rate (e.g., dropping half of the data so that I can

get fast results calculated over the remaining half is better than getting slow results

even if they are calculated over all of the data). The scheduler attempts to schedule

Chapter 2: Background and Related Work 15

operators so as to maximize the QoS experienced by each output. Lastly, when a

system is overloaded, queues grow unbounded and tuples must be dropped. Aurora

sheds load by inserting drop operators at locations in the graph that minimize QoS

reductions while still relieving the overload. If query outputs specify value-based QoS

graphs (e.g., “Temperate values above 100 are particularly important to me”), then

the drop operators can use this information to preferentially drop low-value tuples

instead of dropping tuples at random.

2.2.2 TelegraphCQ

Query Model: In TelegraphCQ, users can directly specify a dataflow graph for

each query (as in Aurora) or can write queries in a SQL-like language, from which a

dataflow graph is derived automatically. For tuple processing, TelegraphCQ operators

are largely similar to Aurora’s, consisting of “standard relational operators such as

joins, selections, projections, grouping and aggregation, and duplicate elimination.”

TelegraphCQ also provides a particularly detailed and flexible windowing syntax.

Nearly all SPEs provide some notion of time- and tuple-based windows, and most

also differentiate between sliding windows (which produce an output and advance

one step for every tuple processed) and tumbling windows (which accumulate a full

window of data before producing a single output and then flushing the entire window).

TelegraphCQ, however, goes further by supporting essentially arbitrary windowing

semantics; users specify via a for-loop-like syntax exactly how the window should

evolve for each received tuple.

Static Optimizations: Compared to Aurora, TelegraphCQ places relatively lit-

Chapter 2: Background and Related Work 16

tle emphasis on static optimizations, instead focusing mostly on runtime operations.

The primary exception to this is TelegraphCQ’s permanent mapping of queries onto

threads in order to support multithreaded operation. When there are more queries

than threads, each thread is responsible for multiple queries and it is beneficial to

group together “similar” queries to share computation. For example, if two queries

both start with the same operator, they can be combined so that the operator is

only executed once on each tuple, and then the results are copied and routed to the

remainder of each query.

Runtime Operation: Tuples are adaptively routed via Eddies [35], which are

modules responsible for routing tuples through some number of (at least partially)

commutative operators. The main idea is that Eddies, with relatively simple policies,

are able to route tuples preferentially through more selective or less costly operators

before less selective or more costly operators, without knowing operator selectivities

or costs a priori. This is obviously beneficial; not only does it mean that profiling of

operators is no longer necessary, but it also increases the robustness of the system to

unexpected data patterns (e.g., an operator that is low-cost on average may be high-

cost on certain tuple values). One danger, however, is that TelegraphCQ explicitly

optimizes for overall throughput, and one or more individual queries may starve as a

result.

2.2.3 Borealis

Borealis [54] is a strict extension of Aurora, contributing three features. Firstly,

Borealis supports dynamic revision of query results. This means that if an input

Chapter 2: Background and Related Work 17

stream supports revision records (which correct or update a prior tuple), Borealis

attempts to replay the query using past data, but with the revised tuple in place of

the original tuple. In this way, Borealis can create a corrected output value to replace

the previous (possibly incorrect) output value. Of course, this is not always possible

since Borealis is limited in its ability to buffer data; if a revision record is received for

a tuple that was originally received a week ago, there is little chance that the system

still has the full prior week’s worth of data buffered to replay.

Secondly, Borealis supports dynamic query revision. Queries in Borealis may

specify control lines from one operator to another, by which new parameters can be

sent. For example, if an operator detects a surge in traffic which may lead to system

overload (and load shedding), it could use a control line to increase the selectivity of

an upstream operator. Alternatively, the operator could provide a new (perhaps less

expensive) user function parameter to an upstream map operator.

Lastly, Borealis extends the Aurora optimizer to work in distributed settings.

Borealis makes use of a hierarchy of optimizers: local optimizers run on each node

and act locally; neighborhood optimizers run on each node but can also load-balance

across directly-connected nodes; and a single global optimizer operates across the

entire network. The idea is simply that any problems (system overload or latency

increase) are first dealt with locally. If the situation fails to improve after some time

period, the problem is escalated to the neighborhood optimizer, which attempts to

load-balance across nearby nodes. Finally, if necessary, the global optimizer is invoked

to attempt a solution.

Chapter 2: Background and Related Work 18

2.2.4 STREAM

STREAM [105] is quite similar to TelegraphCQ is many ways. One primary dif-

ferentiator of this system is how it handles overload situations; STREAM introduces

tuple-dropping operators (like many systems) but also performs window reduction.

By tightening the bounds of a windowing operator (e.g., aggregating over only the

last 10 tuples, instead of the last 30), fewer tuples will need to be stored in memory.

In a few special cases, the window should actually be expanded in order to reduce

load, such as an operator that is part of a NOT EXISTS clause.

2.2.5 System S

IBM’s System S [33] focuses heavily on producing highly optimized code during

the initial compilation and setup process. Queries are specified in a dataflow language

called Spade [75]. The compilation process first produces code for each operator, and

then fuses operators into processing elements (PEs). Tuples are transferred between

PEs via queues since (a) each PE runs in its own execution environment (thread

or process, depending on the target system), and (b) PEs may even be running

on different physical machines. On the other hand, tuples are transferred between

operators within the same PE by direct function call, which has much lower overhead.

Thus, the Spade compiler must strike a balance between creating too few PEs, which

may underutilize the hardware resources (e.g., a core will be idle if there is no PE

to assign to it), and creating too many PEs, which leads to excessive tuple-transfer

overhead. In order to make these decisions, the Spade compiler takes into account

both the specific number of machines available (as provided by the user) and the

Chapter 2: Background and Related Work 19

statistical properties of each operator (e.g. cost, selectivity). The compiler can learn

an operator’s properties by running it through a special profiling mode.

System S supports more flexible data types than most systems. In particular,

vector types, which are common in fields such as signal processing and data mining,

are supported in addition to the usual scalar types. This is noteworthy because the

Spade compiler can utilize Single-Instruction Multiple-Data (SIMD) operations avail-

able in most modern processors to accelerate basic arithmetic operations on vector

types. Spade also allows queries to forgo static input stream declarations (as is the

norm) and instead specify only the input stream’s type. For example, instead of spec-

ifying a particular stock ticker source, a query can state that it will accept any input

stream of type StockTicker. In this case the system will search for any available,

type-compatible (i.e., superset of) streams, which may in fact be the output of other

running queries.

2.2.6 Summary and Limitations

These systems are principally concerned with keeping up with the flow of incoming

data, and they utilize a wide range of compile-time (e.g., operator reordering) and

run-time (e.g., scheduling heuristics) techniques to minimize processing and storage

overheads. These systems have proven successful in a variety of application domains.

Aurora, for example, has been used to build applications in each of the following do-

mains: financial services, highway traffic monitoring, military battlefield monitoring,

and environmental (water toxin) monitoring. System S has been used for astronomi-

cal data mining and manufacturing process control and monitoring (amongst others).

Chapter 2: Background and Related Work 20

Nonetheless, many more applications currently lie out of reach of these systems. In

most cases this is due to a failure (within specific domains) to overcome the funda-

mental challenges we set forth in Section 1.2: effective query interfaces and scalability.

1. Effective Query Interfaces: As noted above, these systems all assume that

streams consist of fixed-schema tuples. This is certainly due in part to the fact

that many of these researchers come from the database community, and this

is the model that the great majority of traditional databases use: each row of

a table is effectively just such a tuple, with the table’s columns dictating the

(fixed) schema of each tuple. However, some applications find this model to be

a poor fit; users may have difficulty expressing desired query semantics or the

resulting query plan may be unnecessarily inefficient.

For example, consider a text-processing application for which one desires an op-

erator to parse and return all quotations from each input text block. Its unclear

what type the output stream should have; e.g., if the input stream is of type

〈Author, T itle, Text〉, an output stream of type 〈Author, T itle, ListOfQuotes〉

seems reasonable, but is not supported since lists are not simple data types.

Similarly, the fixed-schema requirement prevents the operator from returning a

variable number of fields, as necessary (e.g., 〈Author, T itle, Quote1, Quote2, ...,

QuoteN〉). As a final alternative, the operator could implement a 1-to-N trans-

formation, with one tuple (of type 〈Author, T itle, Quote〉) returned for each

quotation found in the input text. This schema would be supported, but has

the downsides that (a) there is the overhead of repeating the Author and Title

fields in every output tuple, and (b) breaking each text blocks’ quotations up

Chapter 2: Background and Related Work 21

into multiple tuples may complicate the implementation of other operators (e.g.,

counting the number of quotations per text block would require keeping state

while tuples are still arriving, and some method of detecting when the last tuple

from each text block has been received).

Additionally, in some applications it may be desirable for queries to provide

feedback to the data collection process. For example, if the data source is a

video camera, users may wish to write queries that execute commands to the

camera (e.g., “pan left”) in response to the received data. Such semantics are

difficult or impossible to express in most of these systems’ query interfaces.

Systems that support some degree of inter-module control (e.g. feedback loops

in System S and control lines in Borealis) focus on dynamically changing the

query’s internal properties, as opposed to affecting external systems.

2. Scalability: The process of actually collecting data and marshalling it into

a stream format that can be processed by the SPE tends to be particularly

domain-specific and difficult to generalize in a useful way. This is in part because

data collection is, by definition, the furthest upstream operation in any query,

and thus must operate on the greatest volume of data4. Thus, scalability is

necessarily a primary concern for data collection modules. The above systems

generally take the practical approach of providing a few simple adapters for data

sources such as local files, web pages, or network sockets, assuming that most

applications will require development of custom adapters in order to achieve the

4For all practical queries. A query theoretically could actually produce more data than it receives,
but this is basically never the case.

Chapter 2: Background and Related Work 22

necessary performance.

Example: Wireless Network Monitoring with Borealis

In order to make these limitations more concrete, we discuss some of the issues

that arise when attempting to build a specific system; in this case, an outdoor wire-

less network monitor built with Borealis. Our choice of Borealis for this exercise is

somewhat arbitrary and is not meant to point out specific deficiencies in this system;

on the contrary, the difficulties detailed below would all arise (perhaps in a slightly

different form) when using any of the above SPEs.

Below, we list three requirements of this application (see ch. 6 for details and

justifications) that Borealis has difficulty satisfying.

1. Users should be able to easily and efficiently express a wide variety of

network monitoring tasks as queries. Tuples in Borealis are collections of name-

value pairs. Thus, the straight-forward way of representing a network packet as a tuple

would be to assign each field of the packet to an element of the tuple. For example, an

Ethernet frame could be represented as 〈dstAddr, srcAddr, etherType, payload〉 (ad-

ditional fields could also be included, such as the time that the frame was captured).

To do this efficiently, the tuple elements should index directly into the block of mem-

ory containing the packet data, which is not currently supported; instead, Borealis

must copy out each packet field every time a new protocol header is parsed, which

may occur multiple times per packet (e.g., Ethernet, IP, TCP, HTTP). Although

this improvement could likely be added to Borealis, this may be non-trivial, and its

omission reflects the kinds of applications that guided Borealis’ development effort.

Chapter 2: Background and Related Work 23

2. The system must collect wireless packets captured from a distributed

set of sniffer nodes. We assume that the network bandwidth between nodes is

sufficient for transferring some portion of the capture packets, but it is impossible for

all nodes to forward all captured traffic to a central location for processing. In order

to comply with this application constraint, it is necessary to perform some degree of

data reduction within the sniffer network.

Borealis supports interfacing with, and moving operators into, sensor networks.

This provides the basic functionality that we need in order to satisfy this applica-

tion requirement. However, this complicates the task of writing correct and efficient

queries. For example, a näıvely implemented query to count the number of detected

802.11 networks could overestimate the true value since a single network may be de-

tected by multiple sniffers (and thus simply summing the networks detected by each

sniffer is incorrect). For this simple query, duplication-insensitive aggregation meth-

ods are readily available to yield the correct count [95]. For more complex analyses,

however, it can be rather difficult to construct queries that operate correctly and

efficiently when moved onto the sniffers.

Argos approaches this problem by aggregating and redistributing packets within

the network so that query modules running on a sniffer can operate on a merged packet

stream, instead of the raw stream of packets as captured locally by the sniffer (for

details, see §6.3.3). Although query writers still must take some care to aggregate

values correctly, this approach has the advantages that (a) there are no duplicate

packets, even across different sniffers, and (b) all traffic from any given 802.11 network

is handled on just one sniffer (instead of spread across all sniffers that happen to be

Chapter 2: Background and Related Work 24

nearby). These significantly ease the query writing process.

Argos’ approach is technically possible in Borealis; one can simply require that

all queries are prefixed by a carefully crafted subquery that implements the packet-

merging logic. However, this is a brittle solution, because it relies on two assumptions

about the Borealis compiler. Firstly, it assumes that Borealis will notice that every

query starts with an identical subquery, and will optimize all N queries to share

a single copy of this subquery, instead of each query inefficiently running its own

(redundant) copy. Secondly, it assumes that Borealis will not perform any other op-

timizations on the queries (e.g., changing the order of commutable operators) that

could modify their subquery prefix, which would in turn prevent the aforementioned

N -way subquery merge. Argos avoids these dangers by placing the merging function-

ality in the core system itself instead of forcing queries to replicate it.

3. The query interface should include the ability to issue commands to

individual sniffers to change the sniffer radio to a different 802.11 channel.

802.11 communications span multiple radio channels, only one of which can be mon-

itored at any one time5. Thus, unless a system is content with foregoing traffic on

all but one channel, some kind of channel policy will be necessary. Sniffers could, for

example, rotate through each channel, spending a fixed amount of time monitoring

each; or sniffers could change the channel in response to certain traffic patterns (such

as when nothing “interesting” has been detected on the current channel for a while).

Assuming a custom data stream source (adapter) will need to be built to interface

with the sniffer radios to actual receive captured packets from the OS and marshal

5This ignores the fact that packets from nearby channels can sometimes be “overheard”, but this
effect is unreliable.

Chapter 2: Background and Related Work 25

them into a Borealis stream, we can easily add a channel-changing API to this com-

ponent. However, Borealis provides no reasonable way for queries to access this API.

At best, we could hard-code a channel policy into the component itself, but this is

certainly less useful than exposing this functionality to the queries since different

queries may have different preferences.

2.3 Domain-Specific SPEs

We refer to data sources that (a) produce non-tuple-like data, (b) support query

feedback, or (c) require optimized data collection as complex data sources. This

dissertation presents two novel systems for querying over complex data sources, but

these are certainly not the first systems to do so. Instead, one of our contributions

is to identify common design principles that are found across a wide variety of query

systems for complex data sources, and show how these can be applied in two new

domains. For illustrative purposes, we detail two existing domain-specific systems

built for querying complex data sources.

2.3.1 Example 1: TinyDB

TinyDB [96] is a query system designed for low-power wireless sensor networks.

It is described as an acquisitional query processing engine – that is, it combines both

query processing and data acquisition (i.e. when and where to sample sensors in the

network).

1. Query interfaces tailored to the application’s specific data types:

TinyDB uses a query language that is similar to SQL, plus numerous extensions

Chapter 2: Background and Related Work 26

“tailored to the sensor network domain.” These include the ability to specify sensing

intervals (e.g. “sample and return the temperature every 5 seconds”), event-based

queries (e.g. “wait until a bird-detection event, then return the average tempera-

ture every 5 seconds for 30 seconds”), and lifetime-based queries (e.g. “sample and

return the temperature as often as possible such that the nodes’ batteries last at least

30 days”). These extensions are all different ways for users to address their scientific

needs (collecting enough data from the right places at the right times) while also

managing the sensor network’s energy constraints.

2. Optimized data collection processes:

TinyDB employs a variety of techniques to prune unnecessary radio communica-

tion and sensor sampling, as these are both significant energy consumers in low-power

wireless sensor networks. TinyDB attempts to intelligently order sensor samplings so

as to skip some if predicates allow. For example, the query ‘select accel, mag

where accel>100 sample interval 1s’ generally requires two sensor samplings,

but the magnetometer sampling is unnecessary if the predicate (where accel>100)

fails to hold. So by sampling the accelerometer first, the query may be aborted early

in some cases, avoid the magnetometer sampling. TinyDB also takes into account the

actual energy cost of each sensor as well as the expected selectivity of each predicate.

As another example, TinyDB handles network congestion by adapting sensing and

transmit rates, using semantic query information to drop the least important tuples

when transmit queues overflow. Though analogous to the load-shedding that many

SPEs perform internally, this is differentiated by occurring in the sensor network ; a

näıve network proxy that collects data from a sensor network without knowledge of

Chapter 2: Background and Related Work 27

running user queries would not be able to make these optimized decisions.

3. Allow queries to provide feedback to the collection process:

TinyDB supports arbitrary commands; implementation code is pre-compiled in

the node binary and can be invoked via the query language. In particular, commands

can be set up as triggers, to be executed when certain conditions are met. This ex-

ample sounds a 512ms buzzer whenever high temperatures are detected:

SELECT temp FROM sensors

WHERE temp > thresh TRIGGER ACTION SetSnd(512)

2.3.2 Example 2: Gigascope

Gigascope [61] is a query system designed for network monitoring applications. It

is designed to provide a structured query environment for complex queries in a variety

of settings, while maintaining the performance required to monitor high-speed (gigabit

and higher) links.

1. Query interfaces tailored to the application’s specific data types:

Queries in Gigascope are specified in GSQL, a pure stream query language with

SQL-like syntax. Input streams, called Protocols, are generated by interpreting (via

a library of functions) a sequence of data packets, either from a disk or from live

capture; effectively any network protocol can be supported, given an appropriate

parsing library. Users can provide their own code to implement special operations,

such as IP datagram defragmentation.

2. Optimized data collection processes:

Chapter 2: Background and Related Work 28

Like many SPEs, Gigascope optimizes queries by rearranging the query plan. A

unique aspect, however, is its ability to push some of the query logic into the network

interface card (NIC) itself (depending on its capabilities). For example, some NICs

support bpf (berkeley packet filter) expressions [99] which can be used to filter out

unwanted packets as early in the query plan as possible; performing this filtering in

the NIC itself significantly reduces system (kernel) load.

3. Allow queries to provide feedback to the collection process:

It does not appear that Gigascope supports any query feedback, although it is

admittedly difficult to imagine what kinds of feedback/commands might be desired by

users within this domain (wired network monitoring) since packet filtering is already

supported by the query language.

2.4 Other Query System Architectures

Stream-based processing is far from the only model used by real-time query sys-

tems. Here we survey a few of the most relevant areas of research.

2.4.1 Traditional Distributed Pub-Sub Systems

Publish-Subscribe systems attempt to efficiently deliver content6 from publishers

(those that insert content into the system) to subscribers (those that query for and

consume content out of the system), who are generally unknown to the publishers.

Pub-Sub systems can generally be divided into two groups. In topic-based systems,

6Some systems are described as delivering events rather than content, but this is largely a stylistic
distinction.

Chapter 2: Background and Related Work 29

producers publish content to topic channels, to which users may subscribe and receive

notifications when new content is posted. By contrast, in content-based systems

subscribers describe content attributes of interest using some query language, and

the system filters and matches content generated by the publishers to the subscribers’

queries. For a detailed survey of pub-sub middleware literature, see Eugster et al. [68].

Topic-Based Pub-Sub Systems

A variety of topic-based pub-sub systems have been developed. One early exam-

ple is the tuplespaces model of Linda [52]. Linda effectively implements a publish-

subscribe paradigm where all content is in the form of tuples, and “topics” take the

form of any subset of tuple elements. For example, if we assume foo is of type

integer, then the query

in (‘ ‘ a s t r i n g ’ ’ , ? foo , ‘ ‘ another s t r i n g ’ ’)

will match any existing 3-element tuples that have “a string” and “another string”

as the first and third elements, respectively, and whose second element is of type

integer. One may view this query as a poll for content from the topic channel

(‘ ‘ a s t r i n g ’ ’ , <i n t ege r >, ‘ ‘ another s t r i n g ’ ’)

which is an unorthodox, but no less valid, channel identifier. This model has been

adopted by a variety of commercial systems, include JavaSpaces [12], T Spaces [143]

and TIBCO’s event processing software [27].

The ISIS system [76], designed as a toolkit for building fault-tolerant distributed

applications, provides light-weight process groups (LWGs) as a mechanism for com-

municating with multiple processes. However, users soon began using LWGs for much

Chapter 2: Background and Related Work 30

more than just process groups, to the extent that a rearchitecture was necessary to

support the much larger numbers of concurrent LWGs. Effectively, LWGs evolved to

become arbitrary topic channels as in a dedicated pub-sub system.

A more traditional example, Herald [49], focuses on providing simple topic-based

pub-sub functionality while overcoming multiple administrative domains (i.e. lack of

trust between some participants), participant failures (including malicious behavior),

and network partitions.

The fundamental constraint on all topic-based pub-sub systems is the requirement

that publishers and subscribers agree up front on the set of topics (channels). These

may not match well with a particular user’s specific interests, implying that the user

may miss some content of interest and/or receive extra content that they do not want.

Content-Based Pub-Sub Systems

Elvin [126, 127] is one of the earlier pub-sub system to support content-based

subscriptions. In Elvin, each published item (called a notification) consists of a set of

named and typed data elements; subscriptions are boolean expressions of operators

over these elements. Aside from the typical operators (e.g. equals, greater-than),

Elvin provides operators to test for the existence of named elements (exists()),

check the type of an element (datatype()) and perform regular expression matching

on a string (matches()).

Gryphon [134] differs by (a) distributing the middleware service over a network

of servers (Elvin uses a centralized design), and (b) performing transformations

of the event stream. For example, stock quote events of type [ticker, price,

Chapter 2: Background and Related Work 31

volume] can be transformed into new events of type [ticker, capital] where

capital=price*volume. Subscriptions based on the price or volume attributes can

be matched on event prior to this transformation, whereas those based on the capital

attribute can can matched after. Although this model of event transformations has

some similarities to generalized query processing systems (e.g. the SPEs above), an

important distinction is that in Gryphon the graph of transformations are determined

statically and not by the user queries (subscriptions).

Hermes [118] functions as a hybrid system. Subscriptions first specify an event

type, which is effectively a topic, and then specify a number of filters over the at-

tributes of that event type. The authors argue that this maintains much of the

flexibility of content-based pub-sub while better managing large numbers of different

events.

Hermes and Siena [53] are both designed as wide-area services, and thus focus par-

ticularly on overlay-based network topologies and routing strategies for both content

and subscriptions. Siena in particular supports a collection of different client-server

and peer-to-peer topologies, and implements a variety of different routing and repli-

cation strategies to ensure efficient communication between servers.

Limitations

Pub-sub systems are limited in their ability to serve as real-time query systems.

First and foremost, regardless of whether topic-based or content-based filtering is

supported, the query (subscription) languages are quite limited. The subscription

interfaces are designed for identifying content, not transforming it. There is generally

Chapter 2: Background and Related Work 32

no way to express even simple aggregates. Of course clients could perform these

aggregations themselves, but this comes at a heavy cost. For example, if 10 clients

of a stock application each want a count of the number of trades above 100 shares,

most SPEs would calculate this aggregate once and then send a copy of the result

to each client. A pub-sub system would instead have to send a copy of every trade

event above 100 shares to each client, each of which would locally (and redundantly)

compute the count.

2.4.2 Web Search Engines

Broadly speaking, the World Wide Web is arguably the largest content provider

today. The basic design of the Web differs from query systems by (a) requiring users

to request content explicitly (instead of querying for results), and (b) operating in a

pull (users request content) rather than a push (servers send content asynchronously)

mode. Since the Web’s birth, search engines [46] have proliferated as a means by which

users can search for content, and the Atom and RSS standards were developed as a

convenient way for websites to publish content updates. Although Atom and RSS still

require client polling (maintaining the user-pull modality of the Web), client reader

applications exist to poll a user-defined list of websites on a regular basis and alert

on new updates.

A full treatment of research in web search is well beyond the scope of this dis-

sertation, but it is useful to consider a few specific subareas. Firstly, a number of

“blog search engines” have come online in recent years, including Feedster, Blogdig-

ger, Bloglines, IceRocket, and Technorati. Apart from Google and MSN’s blog search

Chapter 2: Background and Related Work 33

services, most of these sites appear to be backed by small startup companies and

little is known about how they operate. In particular, their ability to scale to large

numbers of feeds and users, use network resources efficiently, and maintain low up-

date latencies is unknown. In Chapter 4 we attempt to measure the update latency of

several of these sites. As for MSN and Google, we expect these sites leverage the vast

numbers of server resources distributed across many data centers to rapidly index

updates to blogs. Although an academic research group cannot hope to garner these

kinds of resources, by developing Cobra we hope to shed light on important design

considerations and tradeoffs for this interesting application.

Secondly, there is some relation between deep web mining and querying over com-

plex data sources. The “deep web” refers to online content that is not easily crawled

and indexed by search engines, such as databases behind HTML web forms. Various

studies have estimated that the deep web hides an enormous amount of informa-

tion, perhaps an order of magnitude more than the currently searchable web [82, 40].

The difficulty in reaching this content lies both in (a) finding the online web forms

that access it, and (b) determining (in an automated fashion) what the appropriate

range of inputs to the form are. This is challenging since web forms are designed for

humans to understand, not software, and there is little in the way of standards or

consistency [97, 147].

This problem is not unlike those encountered when designing a query system for

any set of diverse, uncoordinated data sources: how does the query system (a) learn

about the data sources in the first place, and (b) learn what kind of data is produced

and what interactions (e.g. requests or feedback) are supported by the data source.

Chapter 2: Background and Related Work 34

Currently there are no well-established indices of available online data sources, and

few standards for data formatting or sensor interfaces – at best, sites will post human-

readable descriptions that are typically difficult for automated processes to find and

understand.

2.4.3 Content-Delivery Networks

Content-delivery networks (CDNs) are another method of pairing users with de-

sired content. CDNs replicate content from one or more origin websites and dis-

tribute it through the network. When a client makes a request, they are directed to

the nearest7 CDN server, which then provides the requested content. This spreads

out requests across the CDN network, relieving load on the origin websites, and can

improve client performance since content is generally returned more quickly from the

CDN – due to network locality – than it would be from the origin websites. Commer-

cial CDNs are currently quite popular; Akamai [2] and Limelight Networks [13] are

well-known examples. Coral [73] and CoDeeN [109] are two research CDNs running

on Planetlab [117]. CoralCDN functions like a traditional CDN since websites opt-in

to having their content served, whereas CoDeeN is viewed most naturally as a web

proxy since users opt-in to using it. Freedman et al. explain the main difference

between these systems thusly: “Although CoDeeN gives participating users better

performance to most web sites, CoralCDN’s goal is to gives most users better perfor-

mance to participating web sites–namely those whose publishers have ’Coralized’ the

URLs.” Overall, CDNs are relevant by virtue of their focus on efficient data collec-

7“Nearest” usually means “lowest round-trip time”, but client assignment can take into account
other factors as well, such as server load.

Chapter 2: Background and Related Work 35

tion and/or dissemination, although all major systems require content to be named

explicitly (e.g., via URL) instead of providing any kind of query interface.

Corona [121] incorporates aspects of both pub-sub systems and peer-to-peer CDNs.

Users specify interest in specific URLs (like a CDN) and Corona periodically polls the

URL for changes, which are then sent as an update to users (like a pub-sub system)

via instant message notifications. The main goal of Corona is to mitigate the polling

overhead placed on monitored URLs, which is accomplished by spreading polling load

among cooperating peers and amortizing the overhead of crawling across many users

interested in the same URL. An informed algorithm determines the optimal assign-

ment of polling tasks to peers to meet system-wide goals such as minimizing update

detection time or minimizing load on content servers. Compared to Cobra, Corona

provides more flexible trade-offs between the polling load imposed on content sources

(web servers) and the average update detection latency (time between when new con-

tent is posted and when Corona or Cobra detects it). On the other hand, Corona

does not permit an individual user to specify content-based predicates for selecting

content; effectively, Corona implements topic-based pub-sub (where URLs are topics).

2.4.4 MapReduce-related Systems

MapReduce [64] is a programming model for distributed processing of large data

sets. MapReduce was originally designed to operate in an offline manner but its rapid

growth in popularity has lead to a number of projects that integrate MapReduce-style

processing with streaming data.

DEDUCE [89] is an extension of System S (§2.2.5) that allows users to embed

Chapter 2: Background and Related Work 36

MapReduce jobs within a real-time query plan. As a motivating example, the authors

suggest that automated stock trading applications “usually require periodic analysis

of large amounts of stored data to generate a model using MapReduce, which is then

used to process a stream of incident updates using a stream processing system.”

A different approach is taken by the Cascading [3] project, which acts as a wrapper

over the Apache Hadoop [24] implementation of MapReduce. Cascading provides

a stream-like API that makes it easier to string together workflows consisting of

multiple MapReduce jobs. Thus, Cascading does not fundamentally change the actual

operation of the jobs in question (in particular, it does not appear to add the ability

to process data arriving in real-time), but instead changes the query interface from

the traditional MapReduce-style to a streaming-data style.

2.5 Network Monitoring and Measurement

Argos (ch. 6-7) is a query system designed for outdoor, wireless network mon-

itoring. In functionality, Argos is related to prior (domain-specific) SPEs built for

network monitoring and analysis; Gigascope is presented above (§2.3.2) as a repre-

sentative example of this group. The primary differentiator is that these systems

are optimized for centralized, wired packet capture, whereas Argos is optimized for

distributed, wireless packet capture. For Argos, this necessitates a variety of new

techniques for efficiently processing traffic in a distributed fashion.

We also survey a number of network monitoring systems that are not architected

as query systems; e.g., systems that are built to capture all the network traffic for

offline analysis, without any kind of online querying or filtering functionality. Despite

Chapter 2: Background and Related Work 37

this, a brief summary of these systems is useful since many of these systems were

nonetheless influential in the design of Argos.

2.5.1 Wired Network Monitoring

A variety of systems have been designed for the monitoring of wired networks.

Many systems in this class are concerned primarily with ways to manage the high

traffic volumes that can be encountered, particularly on core Internet links such as ISP

backbones. High traffic volumes can stress a host of components within monitoring

systems, including the capturing interface, the CPU (depending on the amount of

analyses or number of buffer copies per packet), the available RAM (when saving

per-flow statistics), and the local storage.

OC3MON [34], an integrated hardware-and-software solution, saves only per-flow

statistics. These are then saved to disk for offline web querying. IPMON [72] saves

the first 40 bytes of every packet; the storage requirements of this policy means that

continuous operation is infeasible. Instead, IPMON is designed to be run simulta-

neously at multiple network locations (pains are taken to time-synchronize across

locations) for a few hours or (at best) days; these traces are then physically sent to a

data repository for offline analyses. Nprobe [102] uses protocol-specific compression

to reduce the volume of traffic logged to disk. Each packet is passed through a series

of modules that handle each protocol layer (e.g. IP, TCP, HTTP), discarding data

that is not considered important (how this determination is made is not discussed).

None of the above systems support any real notion of queries. This is undoubtedly

because they are all essentially concerned only with capturing data and storing it

Chapter 2: Background and Related Work 38

(possibly in a reduced form) for offline analysis. However, many wired monitoring

systems do incorporate some kind of query processing.

Pandora [112] implements a middle-ground design; although Pandora’s end goal

remains to store data for later analysis, users are able to specify a series of oper-

ators through which packets should flow in order to transform the data prior to

storage. These operators perform protocol-related operations, such as stripping a

certain header or reconstructing higher-level payloads from multiple packets; there

is no notion of the traditional aggregation operators found in SPEs (e.g. count,

sum). For example, given an input stream of Ethernet frames, a user could choose

to save all raw IP datagrams, or instead could perform IP defragmentation and TCP

reconstruction, thereby saving only the TCP payloads.

Like Gigacope (§2.3.2), Tribeca [135] is a system designed explicitly for analysis

of network traffic. These systems can be used to monitor live network traffic or

perform offline analyses of network traces (one could, for example, use OC3MON or

IPMON to capture a trace, and then later use Tribeca or Gigacope to analyze it).

The query languages of these systems are quite different; in Tribeca, users specify

an operator graph explicitly, whereas Gigascope uses a SQL-like language. However,

both provide a combination of network-traffic-specific operations (e.g., selecting or

joining on specific header fields) and general aggregation operations (e.g., count,

sum).

Lastly, there is also a class of systems focused on network intrusion detection.

Although some of the above systems are intended to be suitable for this purpose,

Snort [124] and Bro [113] are two systems designed explicitly for network intrusion

Chapter 2: Background and Related Work 39

detection (and prevention in some cases). At this point, both of these systems are

quite mature, with active developer and user communities and “out of the box”

support for detecting a large number of common network attacks. The main difference

is that Snort is rule-based, where each rule specifies some kind of pattern to search for

in the network traffic (e.g., a malware signature, or illegal sequence of messages); Bro,

on the other hand, is event-based, where user-supplied event-handler functions are

called whenever important protocol events occur (e.g., TCP connection established,

FTP reply sent, Finger request sent).

2.5.2 Indoor WLAN Monitoring

Wireless LAN monitoring, by which we mean capture of real wireless traffic (as

opposed to, e.g., analysis of SNMP data, or capture of wireless traffic after it has

passed through a gateway into a wired network), was pioneered by Yeo et al. [144, 145]

under small-scale conditions (3 sniffers, < 10 access points). An important discovery

was that multiple wireless sniffers working in coordination can usually obtain a more

accurate picture of the wireless environment than a single sniffer can, due to the

spatial variability of wireless transmissions. This is in contrast to wired networks,

where monitors on the same LAN nearly always capture identical packet streams

(and thus more than one monitor is generally redundant, except for load-balancing

or fault-tolerance).

Since then, a number of systems have built on Yeo et al.’s techniques, of which Jig-

saw and Wit are representative. Jigsaw [59, 60] is a system for diagnosing MAC-layer

behavior by capturing detailed packet traces from a large number of densely-deployed

Chapter 2: Background and Related Work 40

wireless sniffers. The authors show that by capturing nearly-complete traces of the

wireless activity in a building, a number of analyses can be performed, particularly

in the area of diagnosing performance problems. Jigsaw was deployed on 39 sensor

pods across a single building. A contemporary system, Wit [98], has similar goals to

Jigsaw, but emphasizes the use of a formal language for specifying 802.11 behavior,

which is then used to perform inference on the captured packet traces. Wit was de-

ployed on five sniffers to monitor traffic during a conference. Antler [120] detects and

diagnoses performance problems in real-time, but without the cost of continually cap-

turing all observed network traffic. Instead, each access point initially captures only a

few low-bandwidth performance statistics. If a problem appears, Antler progressively

“hones in” on the root cause by collecting more traffic that will aid in diagnosis.

The Dartmouth MAP system [128] has a slightly different emphasis; instead of

diagnosing performance problems, MAP is designed to detect malicious wireless net-

work activity, such as the presence of rogue access points or a deauthentication at-

tack. In order to monitor all 11 of the 802.11 b/g channels, MAP employs intelligent

channel-hopping schemes, some of which we make use of and build upon in Argos.

An important point to note is that all of these systems rely on a dense deploy-

ment of sniffers and perform a “microscopic” observation of a single wireless network

environment. Argos, in contrast, utilizes a sparse, outdoor sniffer network to perform

“macroscopic” observations across an entire city.

Chapter 2: Background and Related Work 41

2.5.3 Wardriving Studies

The standard approach to studying urban wireless network deployments is wardriv-

ing, in which a mobile sniffer is used to detect the presence and static properties of

deployed wireless LANs [32, 81]. Wardriving studies in numerous cities have revealed

an extremely high penetration of wireless networks, and the online Wigle.net database

reports over 19 million unique wireless LANs [25]. However, these studies do not typ-

ically include any analysis of wireless traffic itself since observations are only made

over short periods of time. A related measurement study [48] explored the extent to

which wireless clients in moving vehicles can establish Internet connectivity via open

access points.

2.5.4 Wireless Sensor Networks

Passive monitoring has also been explored in low-power wireless sensor networks

(WSN), including SNIF [123] and LiveNet [57]. Traditionally, debugging or diagnosing

network performance anomalies in a distributed system is often accomplished with

the use of data recorded by the system itself (e.g., event logs, performance statistics).

However, the limited resources of WSN nodes complicates this; the flash storage

on a mote may not be sufficient for long-term logging, or the available RAM may be

insufficient for debugging code to be included in the executable, for example. Instead,

some WSN utilize external wireless monitoring systems to capture data useful for

debugging purposes. Thus, these systems focus on just a single sensor network rather

than many existing wireless LANs.

Wishbone [107] is system that partitions stream-based applications (specified as

Chapter 2: Background and Related Work 42

a dataflow graph of operators) such that portions of the application are run on the

actual sensor nodes and others are run on the backend server. Wishbone attempts

to find a partitioning that minimizes network traffic (e.g., by pushing data-reduction

operators into the network) without exceeding the sensor nodes’ CPU resources. Ar-

gos also distributes queries over both the sniffer network and the backend server,

although Argos requires users to hand-partition their dataflow graph. If Wishbone

were extended to work with the Click language8, it would be interesting to explore

incorporating it into Argos for automatic query partitioning.

2.5.5 Mesh Network Measurements

A number of studies of the performance and traffic characteristics of urban-scale

mesh networks have been published. The RoofNet project has undertaken detailed

studies of link-layer and routing performance across a WiFi mesh of 38 nodes across

a city [30, 42]. These studies focused on the low-level network performance rather

than ambient traffic. A study of the Google WiFi mesh [28] in Mountain View, CA

explored the behavior of mesh network users, but did so through capturing data at

the wired gateways, and did not look explicitly at the wireless network dynamics.

2.6 Summary

Work related to real-time query systems can largely be divided into three main

groups. First are general-purpose stream processing engines (SPEs), which provide

8Wishbone is tied to the WaveScript [108] language.

Chapter 2: Background and Related Work 43

an application-agnostic platform for database-like stream processing operations. Sec-

ond are domain-specific SPEs, which also use an operators-over-streams style of pro-

cessing, but are tailored to a particular application domain (typically one for which

general-purpose SPEs are poorly suited). Finally, there are a variety of query sys-

tems that do not following a streaming model, including pub-sub systems, web search

engines, CDNs, and specialized network monitoring tools.

Chapter 3

Cobra Architecture

3.1 Introduction

Weblogs, RSS feeds, and other sources of “live” Internet content have been un-

dergoing a period of explosive growth. The popular blogging site LiveJournal reports

nearly 30 million accounts, just over 1 million of which were active over the last

month [14]. Technorati, a blog tracking site, reported in 20081 that they were track-

ing 133 million blogs in 81 different languages; collectively these bloggers created

nearly 1 million new posts every day [130]. These numbers are staggering and sug-

gest a significant shift in the nature of Web content from mostly static pages to

continuously updated conversations.

The problem is that finding interesting content in this burgeoning blogosphere is

extremely difficult. It is unclear that conventional Web search technology is well-

12008 is the last year for which Technorati published an overall blog count in their annual “State
of the Blogosphere” posting.

44

Chapter 3: Cobra Architecture 45

suited to tracking and indexing such rapidly-changing content. Many users make use

of RSS feeds, which in conjunction with an appropriate reader, allow users to receive

rapid updates to sites of interest. However, existing RSS protocols require each client

to periodically poll to receive new updates. In addition, a conventional RSS feed only

covers an individual site, such as a blog. The current approach used by many users is

to rely on RSS aggregators, such as SharpReader and FeedDemon, that collect stories

from multiple sites along thematic lines (e.g., news or sports).

Our vision is to provide users with the ability to perform content-based filtering

and aggregation across millions of Web feeds, obtaining a personalized feed containing

only those articles that match the user’s interests. Rather than requiring users to keep

tabs on a multitude of interesting sites, a user would receive near-real-time updates

on their personalized RSS feed when matching articles are posted. Indeed, a number

of “blog search” sites have sprung up in recent years, including Feedster, Blogdigger,

and Bloglines. However, due to their proprietary architecture, it is unclear how well

these sites scale to handle large numbers of feeds, vast numbers of users, and maintain

low latency for pushing matching articles to users. Conventional search engines, such

as Google, have also added support for searching blogs as well but also without any

evaluation.

This chapter describes Cobra (Content-Based RSS Aggregator), a distributed,

scalable system that provides users with a personalized view of articles culled from

potentially millions of RSS feeds. Cobra consists of a three-tiered network of crawlers

that pull data from web feeds, filters that match articles against user subscriptions,

and reflectors that serve matching articles on each subscription as an RSS feed, that

Chapter 3: Cobra Architecture 46

crawlers

web feeds

filters

reflectors

users
per-user
RSS
feed

m
at

ch
in

g
ar

tic
le

s

updated
articles

raw
content

Figure 3.1: The Cobra content-based RSS aggregation network.

can be browsed using a standard RSS reader. Each of the three tiers of the Cobra

network is distributed over multiple hosts in the Internet, allowing network and com-

putational load to be balanced, and permitting locality optimizations when placing

services.

3.2 Cobra System Design

Figure 3.1 shows the overall architecture of Cobra. Cobra consists of a three-tiered

network of crawlers, filters, and reflectors. Crawlers are responsible for periodically

crawling web feeds, such as blogs, news sites, and other RSS feeds, which we collec-

tively call source feeds. A source feed consists of a series of articles. The number

Chapter 3: Cobra Architecture 47

of articles provided by a source feed at any time depends on how it is configured;

a typical blog or news feed will report only the most recent 10 articles or so. As

described below, Cobra crawlers employ various techniques to reduce polling load by

checking for updates in the source feeds in a lightweight manner.

Crawlers send new articles to the filters, which match the content of those articles

against the set of user subscriptions, using a case-insensitive, index-based matching

algorithm. Articles matching a given subscription are pushed to the appropriate

reflector, which presents to the end user a personalized RSS feed that can be browsed

using a standard RSS reader. The reflector caches the last k matching articles for

the feed (where k is typically 10), requiring that the user poll the feed periodically to

ensure that all matching articles will be detected. This behavior matches that of many

existing RSS feeds that limit the number of articles included in the feed. Although

the reflector must be polled by the user (as required by current RSS standards), this

polling traffic is far less than requiring users to poll many thousands of source feeds.

Also, it is possible to replace or augment the reflector with push-based notification

mechanisms using email, instant messaging, or SMS; we leave this to future work.

The Cobra architecture uses a simple congestion control scheme that applies back-

pressure when a service is unable to keep up with the incoming rate of data from up-

stream services. Each service maintains a 1MB data buffer for each upstream service.

If an upstream service sends data faster than it can be processed, the data buffer

will fill and any further send attempts will block until the downstream service can

catch up, draining the buffer and allowing incoming data again. This ensures that the

crawlers do not send new articles more quickly than the filters can process them, and

Chapter 3: Cobra Architecture 48

likewise that the filters do not pass on articles faster than the reflectors can process

them. The provisioner (detailed in Section 3.3) takes this throttling behavior into

account when verifying that each crawler will be able to finish crawling its entire list

of feeds every 15 minutes (or whatever the crawl-rate is specified to be).

3.2.1 Crawler service

The crawler service takes in a list of source feeds (given as URLs) and periodically

crawls the list to detect new articles. A naive crawler would periodically download

the contents of each source feed and push all articles contained therein to the filters.

However, this approach can consume a considerable amount of bandwidth, both for

downloading the source data and sending updates to the filters. In a conventional

usage of RSS, many users periodically polling a popular feed can have serious network

impact [121]. Although Cobra amortizes the cost of crawling each feed across all users,

the sheer number of feeds demands that we are careful about the amount of network

bandwidth we consume.

The Cobra crawler includes a number of optimizations designed to reduce band-

width usage. First, crawlers attempt to use the HTTP Last-Modified and ETag

headers to check whether a feed has been updated since the last polling interval.

Second, the crawler makes use of HTTP delta encoding for those feeds that support

it.

When it is necessary to download the content for a feed (because its HTTP headers

indicate it has changed, or if the server does not provide modification information),

the crawler filters out articles that have been previously pushed to filters, reducing

Chapter 3: Cobra Architecture 49

bandwidth requirements further and preventing users from seeing duplicate results.

We make use of two techniques. First, a whole-document hash using Java’s hashCode

function is computed; if it matches the previous hash for this feed, the entire document

is dropped. Second, each feed that has changed is broken up into its individual articles

(or entries), which are henceforth processed individually. A hash is computed on each

of the individual articles, and those matching a previously-hashed article are filtered

out. As we show in Chapter 4, these techniques greatly reduce the amount of traffic

between source feeds and crawlers and between crawlers and filters.

3.2.2 Filter service

The filter service receives updated articles from crawlers and matches those articles

against a set of subscriptions. Each subscription is a tuple consisting of a subscription

ID, reflector ID, and list of keywords. The subscription ID uniquely identifies the

subscription and the reflector ID is the address of the corresponding reflector for that

user. Subscription IDs are allocated by the reflectors when users inject subscriptions

into the system. Each subscription has a list of keywords that may be related by

either conjunctions (e.g. “law AND internet”), disjunctions (e.g. “copyright OR

patent”), or a combination of both (e.g. “(law AND internet) OR (privacy AND

internet)”). When an article is matched against a given subscription, each word of

the subscription is marked either true or false based on whether it appears anywhere

in the article; if the resulting boolean expression evaluates to true then the article is

considered to have matched the subscription.

Given a high volume of traffic from crawlers and a large number of users, it is

Chapter 3: Cobra Architecture 50

essential that the filter be able to match articles against subscriptions efficiently. Co-

bra uses the matching algorithm proposed by Fabret et al. [69, 116]. This algorithm

operates in two phases. In the first phase, the filter service uses an index to determine

the set of all words (across all subscriptions) that are matched by any article. This

has the advantage that words that are mentioned in multiple subscriptions are only

evaluated once. In the second phase, the filter determines the set of subscriptions in

which all words have a match. This is accomplished by ordering subscriptions accord-

ing to overlap and by ordering words within subscriptions according to selectivity, to

test the most selective words first. If a word was not found in the first phase, all

subscriptions that include that word can be discarded without further consideration.

As a result, only a fraction of the subscriptions are considered if there is much overlap

between them.

Due to its sub-linear complexity, the matching algorithm is extremely efficient:

matching a single article against 1 million user subscriptions has a 90th percentile

latency of just 10 ms (using data from real Web feeds and synthesized subscriptions,

as discussed in Chapter 4). In contrast, a naive algorithm (using a linear search

across the subscription word lists) requires more than 10 sec across the same 1 million

subscriptions, a four order of magnitude difference.

3.2.3 Reflector service

The final component of the Cobra design is the reflector service, which receives

matching articles from filters and reflects them as a personalized RSS feed for each

user. In designing the reflector, several questions arose. First, should the filter service

Chapter 3: Cobra Architecture 51

send the complete article body, a summary of the article, or only a link to the article?

Clearly, this has implications for bandwidth usage. Second, how should filters inform

each reflector of the set of matching subscriptions for each article? As the number

of matching subscriptions increases, sending a list of subscription IDs could consume

far more bandwidth than the article contents themselves.

In our initial design, for each matching article, the filter would send the reflector

a summary consisting of the title, URL, and first 1 KB of the article body, along

with a list of matching subscription IDs. This simplifies the reflector’s design as it

must simply link the received article summary to the personalized RSS feed of each

of the matching subscription IDs. Article summaries are shared across subscriptions,

meaning if one article matches multiple subscriptions, only one copy is kept in memory

on the reflector.

However, with many active subscriptions, the user list could grow to be very

large: with 100,000 matching subscriptions on an article and 32-bit subscription IDs,

this translates into 400KB of overhead per article being sent to the reflectors. One

alternative is to use a bloom filter to represent the set of matching users; we estimate

that a 12KB filter could capture a list of 100,000 user IDs with a false positive rate

of 0.08%. However, this would require the reflector to test each user ID against the

filter on reception, involving a large amount of additional computation.

In our final design, the filter sends the complete article body to the reflector

without a user list, and the reflector re-runs the matching algorithm against the

list of active subscriptions it stores for the users it is serving. Since the matching

algorithm is so efficient (taking 10ms for 1 million subscriptions), this appears to be

Chapter 3: Cobra Architecture 52

the right trade-off between bandwidth consumption and CPU overhead. Instead of

sending the complete article, we could instead send only the union of matching words

across all matching subscriptions, which in the worst case reduces to sending the full

text.

For each subscription, Cobra caches the last k matching articles, providing a

personalized feed that users can access using a standard RSS reader. The value of k

must be chosen to bound memory usage while providing enough content that a user is

satisfied with the “hits” using infrequent polling; typical RSS readers poll every 15-60

minutes [94]. In our current design, we set k = 10, a value that is typical for many

popular RSS feeds (see Figure 4.1). Another approach might be to dynamically set

the value of k based on the user’s individual polling rate or the expected popularity

of a given subscription. We leave these extensions to future work.

In the worst case, this model of user feeds leads to a memory usage of k ∗

subscriptions ∗ 1KB (assuming articles are capped at 1KB of size). However, in

practice the memory usage is generally much lower since articles can be shared across

multiple subscriptions. In the event that memory does become scarce, a reflector

will begin dropping the content of new articles that are received, saving to users’

feeds only the articles’ titles and URLs. This greatly slows the rate of memory con-

sumption, but if memory continues to dwindle then reflectors will begin dropping

all incoming articles (while logging a warning that this is happening). This process

ensures a graceful degradation in service quality when required.

A user subscribes to Cobra by visiting a web site that allows the user to establish

an account and submit subscription requests in the form of keywords. The web server

Chapter 3: Cobra Architecture 53

coordinates with the reflectors and filters to instantiate a subscription, by performing

two actions: (1) associating the user with a specific reflector node; and (2) injecting

the subscription details into the reflector node and the filter node(s) that feed data

into that reflector. The response to the user’s subscription request is a URL for

a private RSS feed hosted by the chosen reflector node. In our current prototype,

reflector nodes are assigned randomly to users by the Web server, but a locality-aware

mechanism such as Meridian [142] or OASIS [74] could easily be used instead.

3.2.4 Hosting model

We designed Cobra to take advantage of the features offered in today’s cloud

offerings, including easy replication of services, redundancy across geographic and

administrative regions, and highly available elastic resources. Distribution also allows

the placement of Cobra services to take advantage of improved locality when crawling

blogs or pushing updates to users.

This hosting model allows us to make certain assumptions to simplify Cobra’s

design. First, we assume that physical resources in a hosting center can be dedicated

to running Cobra services, or at least that hosting centers can provide adequate vir-

tualization [23, 39] and resource containment [38] to provide this illusion. Second, we

assume that Cobra services can be replicated within a hosting center for increased

reliability. Third, we assume that hosting centers are generally well-maintained and

that catastrophic outages of an entire hosting center will be rare. Cobra can toler-

ate outages of entire hosting centers, albeit with reduced harvest (fraction of content

servers actively crawled) and yield (fraction of results feeds accessible to users) [71].

Chapter 3: Cobra Architecture 54

Reflectors:

Filters:

Crawlers:

(a) Configuration for 4x CPU and 25 Mbps bandwidth

Reflectors:

Filters:

Crawlers:

(b) Configuration for 1x CPU and 100 Mbps bandwidth

Figure 3.2: Operation of the Cobra network provisioner. These figures show

how provisioner results can vary for different constraint combinations; in both of these

cases the network is provisioned for 800,000 feeds, 8 million subscriptions, and 1 GB

of memory, but the CPU and bandwidth constraints differ. (a) Shows the resulting

configuration when the CPU constraint is 4x the default value (see text) and the

bandwidth constraint is 25 Mbps. (b) Shows the resulting configuration when the

CPU constraint is the default value (1x) and the bandwidth constraint is 100 Mbps.

Finally, we assume that allocating resources to Cobra services and monitoring their

performance at runtime can be performed centrally. These assumptions strongly in-

fluence our approach to service provisioning as we are less concerned with tolerating

unexpected variations in CPU and network load and intermittent link and node fail-

ures, as is commonly seen on open experimental testbeds such as PlanetLab [117].

Chapter 3: Cobra Architecture 55

3.3 Service provisioning

As the number of source feeds and users grows, there is a significant challenge in

how to provision the service in terms of computational horsepower and network band-

width. Server and network resources cost money; additionally, a system may have

limitations on the amount of physical resources available. Our goal is to determine

the minimal amount of physical resources required to host a Cobra network capable

of supporting a given number of source feeds and users. For this purpose, we make

use of an offline service provisioning technique that determines the configuration of

the Cobra network in terms of the number of crawlers, filters, and reflectors, as well

as the interconnectivity between these services.

The provisioner takes as inputs the target number of source feeds and users, a

model of the memory, CPU and bandwidth requirements for each service, as well

as other parameters such as distribution of feed sizes and the per-user polling rate.

The provisioner also takes as input a set of node constraints, consisting of limits on

inbound and outbound bandwidth, maximum memory available, and CPU processing

power. Note that this last value is difficult to measure directly and thus we model it

simply as a dimensionless parameter relative to the processing performance observed

on Emulab’s pc3000 machines2. For example, a CPU constraint of 0.75 implies that

the provisioner should assume that nodes will process messages only 75% as fast as

the pc3000s. The provisioner’s output is a graph representing the topology of the

Cobra network graph, including the number of feeds assigned to each crawler and the

number of subscriptions assigned to each reflector and each filter.

23.0 GHz 64-bit Xeon processors

Chapter 3: Cobra Architecture 56

Our provisioner makes the simplifying assumption that, with regards to resource

consumption, all source feeds are equivalent, as are all user subscriptions. This is

certainly not true in reality; source feeds can vary widely in update rate and content

size [94], and users will submit queries of varying length (which affects CPU load) and

will poll their results feeds at different rates. However, we assume that, for typical

parameter ranges, the number of feeds assigned to each crawler and the number

of subscriptions assigned to each filter and reflector will be large enough that the

properties of individual feeds and subscriptions will be insignificant compared to their

average behavior.

Additionally, the provisioner models each Cobra service as running on a sepa-

rate physical host with independent memory, CPU and bandwidth constraints. This

results in a conservative estimate of resource requirements as it does not permit mul-

tiple services within a hosting center to share resources (e.g., bandwidth). A more

sophisticated algorithm could take such resource sharing into account.

The provisioner attempts to configure the network to meet the target number

of source feeds and users while minimizing the number of services. The algorithm

operates as follows. It starts with a simple 3-node topology with one crawler, one

filter, and one reflector. In each iteration, the algorithm identifies any constraint

violations in the current configuration, and greedily resolves them by decomposing

services as described below. When no more violations exist, the algorithm terminates

and reports success, or if a violation is found that cannot be resolved, the algorithm

terminates and reports failure.

An out-decomposition resolves violations by replacing a single service with n repli-

Chapter 3: Cobra Architecture 57

cas such that all incoming links from the original service are replicated across the

replicas, whereas the outgoing links from the original services are load balanced across

the replicas. An in-decomposition does the opposite: a single service is replaced by

n replicas such that all outgoing links from the original service are replicated across

the replicas, whereas the incoming links from the original services are load balanced

across the replicas.

In resolving a violation on a service, the choice of decomposition type (in- or

out-) depends both on the type of violation (in-bandwidth, out-bandwidth, CPU, or

memory) and the type of service (crawler, filter or reflector). Figure 3.3 shows which

decomposition is used in each situation.

When faced with multiple violations, the algorithm uses a few simple heuristics

to choose the order in which to resolve them. Some violations have the potential

to be resolved indirectly in the course of resolving other violations. For example,

if a crawler service has both in-bandwidth and out-bandwidth violations, resolving

the in-bandwidth violation is likely to also resolve the out-bandwidth violation (by

reducing the number of feeds crawled, we also implicitly reduce the number of feed

updates that are found and output by the crawler). Thus it is preferable in this

case to resolve the in-bandwidth violation first as it may solve both violations with

one decomposition. In general, when choosing which of multiple violations to resolve

first, the algorithm will choose the violations with the least potential to be resolved

indirectly, thus saving the violations with higher potential until as late as possible (in

the hopes that they will “happen to be resolved” in the mean time).

Although this greedy approach might lead to local minima and may in fact fail

Chapter 3: Cobra Architecture 58

Service Violation Decomposition & Reason

Crawler in-bw in – reduces # of feeds crawled

out-bw in – reduces rate of updates (fewer sent to filters)

cpu none – crawler cpu is not modeled

memory none – crawler memory is not modeled

Filter in-bw in – reduces # of crawlers sending updates to each filter

out-bw in – reduces rate that articles are received, reducing rate
that articles are output to reflectors

cpu out – reduces # of subscriptions that articles match
against

memory out – reduces # of subscriptions stored on the filter

Reflector in-bw none – not resolvable; reflectors need updates from all
feeds (so users can receive all matching articles)

out-bw out – reduces # of subscriptions, reducing web

request rate (of match results) by users

cpu out – reduces # of subscriptions that articles match
against and # of article-queues that are updated

memory out – reduces # of stored subscriptions and article lists

Figure 3.3: Provisioner choice of decomposition for each service/violation

combination.

to find a topology that satisfies the input constraints when such a configuration does

exist, in practice the algorithm produces network topologies with a modest number

of nodes to handle large loads. We chose this greedy iterative approach because it

was conceptually simple and easy to implement. Figure 3.2 shows two provisioner

topologies produced for different input constraints.

Chapter 3: Cobra Architecture 59

3.3.1 Service instantiation and monitoring

The output of the provisioner is a virtual graph (see Figure 3.2) representing

the number and connectivity of the services in the Cobra network. Of course, these

services must be instantiated on physical hosts. A wide range of instantiation policies

could be used, depending on the physical resources available. For example, a small

startup might use a single hosting center for all of the services, while a larger company

might distribute services across multiple hosting centers to achieve locality gains.

Both approaches permit incremental scalability by growing the number of machines

dedicated to the service.

The Cobra design is largely independent of the mechanism used for service in-

stantiation. In our experiments described in Chapter 4, we use different strategies

based on the nature of the testbed environment. In our dedicated cluster and Emu-

lab experiments, services are mapped one-to-one with physical hosts in a round-robin

fashion. In our PlanetLab experiments, services are distributed randomly to achieve

good coverage in terms of locality gains for crawling and reflecting (described below).

An alternate mechanism could make use of previous work on network-aware service

placement to minimize bandwidth usage [31, 119].

After deployment, it is essential that the performance of the Cobra network be

monitored to validate that it is meeting targets in terms of user-perceived latency as

well as bandwidth and memory constraints. Also, as the user population and number

of source feeds grow it will be essential to re-provision Cobra over time. We envision

this process occurring over fairly coarse-grained time periods, such as once a month

or quarter. Each Cobra node is instrumented to collect statistics on memory usage,

Chapter 3: Cobra Architecture 60

CPU load, and inbound and outbound bandwidth consumption. These statistics can

be collected periodically to ascertain whether re-provisioning is necessary.

3.3.2 Source feed mapping

Once crawler services have been instantiated, the final step in running the Cobra

network is to assign source feeds to crawlers. In choosing this assignment, we are

concerned not only with spreading load across multiple crawlers, but also reducing

the total network load that the crawlers will induce on the network. A good way to

reduce this load is to optimize the locality of crawlers and their corresponding source

feeds. Apart from being good network citizens, improving locality also reduces the

latency for crawling operations, thereby reducing the update detection latency as

perceived by users. Because the crawlers use fairly aggressive timeouts (5 sec) to

avoid stalling on slow feeds, reducing crawler-feed latency also increases the overall

yield of a crawling cycle.

We assign source feeds to crawlers in a latency-aware fashion. One approach is to

have each crawler measure the latency to all of the source feeds and use this informa-

tion to perform a coordinated allocation of the source feed list across the crawlers.

Alternately, we could make use of network coordinate systems, such as Vivaldi [63],

which greatly reduces ping load by mapping each node into a low-dimensional co-

ordinate space, allowing an estimate of the latency between any two hosts to be

measured as the Euclidean distance in the coordinate space. However, such schemes

require end hosts to run the network coordinate software, which is not possible in the

case of oblivious source feeds.

Chapter 3: Cobra Architecture 61

Instead, we perform an offline measurement of the latency between each of the

source feeds and crawler nodes using King [79]. King estimates the latency between

any two Internet hosts by performing an external measurement of the latency between

their corresponding DNS servers; King has been reported to have a 75th percentile

error of 20% of the true latency value. It is worth noting that many source feeds are

hosted by the same IP address, so we achieve a significant reduction in the measure-

ment overhead by limiting probes to those nodes with unique IP addresses. In our

sample of 102,446 RSS feeds, there are only 591 unique IP addresses.

Given the latency matrix between feeds and crawlers, we perform assignment using

a simple first-fit bin-packing algorithm. The algorithm iterates through each crawler

Cj and calculates i? = arg min l(Fi, Cj), where l(·) is the latency between Fi and Cj.

Fi? is then assigned to Cj. Given F feeds and C crawlers, we assign F/C feeds to

each crawler (assuming F > C). We have considered assigning varying number of

feeds to crawlers, for example, based on the posting activity of each feed, but have

not yet implemented this technique.

Figure 3.4 shows an example of the source feed mapping from one of our exper-

iments. To reduce clutter in the map we show only 3 crawlers (one in the US, one

in Switzerland, and one in Japan) and the 5 nearest crawlers, according to estimated

latency, for each. The mapping process is clearly effective at achieving good locality

and naturally minimizes traffic over transoceanic links.

Chapter 3: Cobra Architecture 62

Figure 3.4: An example of locality-aware source feed mapping. Three crawlers

are shown as circles and the 5 nearest source feeds, according to estimated latency,

are shown as triangles. Colors indicate the mapping from feeds to crawlers, which is

also evident from the geographic layout.

3.4 Implementation

Our prototype of Cobra is implemented in Java and uses the SBON (stream-based

overlay networks) [119] substrate for setting up and managing data flows between

services. Note, however, that the placement of Cobra services onto physical hosts is

determined statically, at instantiation time, rather than dynamically as described in

previous work [119]. A central controller node handles provisioning and instantiation

of the Cobra network. The provisioner outputs a logical graph, which is then instan-

tiated on physical hosts using a (currently random) allocation of services to hosts.

The instantiation mechanism depends on the specific deployment environment.

Our implementation of Cobra consists of 29178 lines of Java code in total. The

crawler service is 2445 lines, the filter service is 1258 lines, and the reflector is 622 lines.

The controller code is 377 lines, while the remaining 24476 consists of our underlying

Chapter 3: Cobra Architecture 63

SBON substrate for managing the overlay network.

3.5 Summary

We have designed Cobra as a distributed, scalable system to aggregate and fil-

ter millions of RSS feeds into results feeds personalized to each subscriber. Cobra

consists of a three-tiered network of crawlers that periodically crawl web feeds, filters

that match crawled articles to user subscriptions, and reflectors that provide recently-

matching articles on each subscription as an RSS feed. Each of the three tiers of a

Cobra network is distributed over multiple hosts in the Internet, allowing compu-

tational and network load to be balanced across servers, and allowing for locality

optimizations when placing services.

Chapter 4

Cobra System Evaluation

We have several goals in our evaluation of Cobra. First, we show that Cobra can

scale well to handle a large number of source feeds and user subscriptions. Scalabil-

ity is limited by service resource requirements (CPU and memory usage) as well as

network bandwidth requirements. However, a modestly-sized Cobra network (Fig-

ure 3.2) can handle 8M users and 800,000 source feeds. Second, we show that Cobra

offers low latencies for discovering matching articles and pushing those updates to

users. The limiting factor for update latency is the rate at which source feeds can be

crawled, as well as the user’s own polling interval. We also present data comparing

these update latencies with three existing blog search engines: Google Blog Search,

Feedster, and Blogdigger.

We present results from experiments on three platforms: a local cluster, the Utah

Emulab testbed [140], and PlanetLab. The local cluster allows us to measure service-

level performance in a controlled setting, although scalability is limited. Our Emulab

results allow us to scale out to larger configurations. The PlanetLab experiments are

64

Chapter 4: Cobra System Evaluation 65

intended to highlight the value of source feed clustering and the impact of improved

locality.

We use a combination of real and synthesized web feeds to measure Cobra’s per-

formance. The real feeds consist of a list of 102,446 RSS feeds from syndic8.com,

an RSS directory site. The properties of these feeds were studied in detail by Liu

et al. [94]. To scale up to larger numbers, we implemented an artificial feed genera-

tor. Each generated feed consists of 10 articles with words chosen randomly from a

distribution of English words based on popularity rank from the Brown corpus [17].

Generated feed content changes dynamically, with update frequencies similar to those

observed in real feeds [94]. The feed generator is integrated into the crawler service

and is enabled by a runtime flag.

Simulated user subscriptions are similarly generated with a keyword list consisting

of the same distribution as that used to generate feeds. We exclude the top 29 most

popular words, which are considered excessively general and would match essentially

any article. (We assume that these words would normally be ignored by the subscrip-

tion web portal when a user initially submits a subscription request.) The number

of words in each query is chosen from a distribution based on a Yahoo study [43] of

the number of words used in web searches; the median subscription length is 3 words

with a maximum of 8. All simulated user subscriptions contain only conjunctions

between words (no disjunctions). In Cobra, we expect that users will typically sub-

mit subscription requests with many keywords to ensure that the subscription is as

specific as possible and does not return a large number of irrelevant articles. Given

the large number of simulated users, we do not actively poll Cobra reflectors, but

Chapter 4: Cobra System Evaluation 66

median 90th percentile
Size of feed (bytes) 7606 22890
Size of feed (articles) 10 17
Size of article (bytes) 768 2426
Size of article (words) 61 637

Figure 4.1: Properties of Web feeds used in our study.

rather estimate the additional network load that this process would generate.

4.1 Properties of Web feeds

Liu et al. [94] present a detailed evaluation of the properties of RSS feeds, using

the same list of 102,446 RSS feeds as used in our study. Figure 4.1 summarizes the

size of the feeds and individual articles observed in a typical crawl of this set of feeds

between October 1–5, 2006. The median feed size is under 8 KB and the median

number of articles per feed is 10.

Figure 4.2 shows a scatterplot of the size of each feed compared to its crawl time

from a PlanetLab node running at Princeton. The figure shows a wide variation in

the size and crawl time of each feed, with no clear relationship between the two. The

large spike around size 8000 bytes represents a batch of 36,321 RSS feeds hosted by

topix.net. It turns out these are not static feeds but dynamically-generated aggre-

gation feeds across a wide range of topics, which explains the large variation in the

crawl time.

Chapter 4: Cobra System Evaluation 67

 0

 5

 10

 15

 20

0 10 20 30 40 50

D
o
w

n
lo

a
d

 T
im

e
 (

s
e

c
)

Feed Size (KB)

Figure 4.2: Relationship between feed size and crawl time.

4.2 Microbenchmarks

Our first set of experiments measure the performance of the individual Cobra

services.

4.2.1 Memory usage

Figure 4.3 shows the memory usage of a single Reflector service running on Em-

ulab, as articles are received over time. In each case, the usage follows a logarithmic

trend. However, the curves’ obvious offsets make it clear that the number of sub-

scriptions stored on each reflector strongly influences its memory usage. For example,

with a half-million subscriptions, the memory usage reaches ∼310 MB after receiving

60,000 articles, whereas with 1 million subscriptions the memory usage reaches nearly

Chapter 4: Cobra System Evaluation 68

 0

 128

 256

 384

 512

 640

 768

 896

 1024

0 10 20 30 40 50 60

M
e
m

o
ry

 U
s
a

g
e
 (

M
B

)

Articles Received (thousands)

500K subscriptions
1M subscriptions

1.5M subscriptions
2M subscriptions

Figure 4.3: Memory usage of the reflector service over time. The x-axis of

this figure is the total number of articles received by the reflector. For context, we

estimate that a set of 1 million feeds can be expected to produce an average of ∼48.5

updated articles every second, or ∼2910 each minute.

500 MB. This is not surprising; not only must reflectors store each actual subscription

(for matching), but also each user’s list of articles.

However, after the initial burst of article storage, the rate of memory consumption

slows dramatically due to the cap (of k = 10) on each user’s list of stored articles.

This cap prevents users with particularly general subscriptions (that frequently match

articles) from continually using up memory. Note that in this experiment no articles

(or article contents) were dropped by the reflectors’ scarce memory handling logic (as

described in Section 3.2.3). The only time that articles were dropped was when a

Chapter 4: Cobra System Evaluation 69

user’s list of stored articles exceeded the size cap.

This experiment assumes that articles are never expired from memory (except

when a user’s feed grows beyond length k). It is easy to envision an alternative

design in which a user’s article list is cleared whenever it is polled (by the user’s

RSS reader) from a reflector. Depending on the frequency of user polling, this may

decrease overall memory usage on reflectors but an analysis of the precise benefits is

left to future work.

In contrast, the memory usage of the crawler and filter services does not change

as articles are processed. For crawlers, the memory usage while running is essentially

constant since crawlers are unaffected by the number of subscriptions. For filters, the

memory usage was found to vary linearly with the number of subscriptions (∼0.16

MB per 1000 subscriptions held) and thus changes only when subscriptions are added

or removed.

4.2.2 Crawler performance

Figure 4.4 shows the bandwidth reduction resulting from optimizations in the

crawler to avoid crawling feeds that have not been updated. As the figure shows,

using last-modified checks for reading data from feeds reduces the inbound bandwidth

by 57%. The combination of techniques for avoiding pushing updates to the filters

results in a 99.8% reduction in the bandwidth generated by the crawlers, a total of

2.2 KB/sec for 102,446 feeds. We note that none of the feeds in our study supported

the use of HTTP delta encoding, so while this technique is implemented in Cobra it

does not yield any additional bandwidth savings.

Chapter 4: Cobra System Evaluation 70

Incoming
Bandwidth

Outgoing
Bandwidth

0

200

400

600

800

1000

1200

1400

1600

1800
Ba

nd
w

id
th

 (K
B/

se
c)

1
1
9

4
.7

1
1
9

4
.7

5
1
7
.2

5
1
7
.2

4
8
.0

2
.2

No filtering
Last-modified check
Document hash
Article hash

Figure 4.4: Bandwidth reduction due to intelligent crawling. This graph shows

the amount of data generated by the crawler using different techniques: (a) crawl all

feeds; (b) filter based on last-modified header; (c) filter based on whole-document

hash; and (d) filter based on per-article hashes.

The use of locality-aware clustering should reduce the time to crawl a set of source

feeds, as well as reduce overall network load. From our initial set of 102,446 feeds, we

filtered out those that appeared to be down as well as feeds from two aggregator sites,

topix.net and izynews.de, that together constituted 50,953 feeds. These two sites host

a large number of dynamically-generated feeds that exhibit a wide variation in crawl

times, making it difficult to differentiate network effects.

Figure 4.5 shows the time to crawl the remaining 34,092 RSS feeds distributed

Chapter 4: Cobra System Evaluation 71

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

c
ti
o
n
 o

f
IP

 a
d

d
re

s
s
e

s
 (

C
D

F
)

Time to download full feed (seconds)

Locality aware assignments
Random assignments

Figure 4.5: Effect of locality-aware clustering. This is a CDF of the time to

crawl 34092 RSS feeds across 481 separate IP addresses from 11 PlanetLab hosts,

with and without the locality aware clustering.

across 481 unique IP addresses. 11 crawlers were run on PlanetLab distributed across

North America, Europe, and Asia. With locality aware mapping, the median crawl

time per feed drops from 197 ms to 160 ms, a reduction of 18%.

4.2.3 Filter performance

Figure 4.6 shows the median time for the filter’s matching algorithm to compare

a single article against an increasing number of user subscriptions. The matching

algorithm is fast, requiring less than 20 ms to match an article of 2000 words against

1 million user subscriptions. Recall that according to Figure 4.1, the median article

Chapter 4: Cobra System Evaluation 72

 0

 5

 10

 15

 20

 1000 10000 100000 1e+06

M
e

d
ia

n
 T

im
e

 t
o

 M
a

tc
h

 (
m

s
)

Number of Subscriptions

100 words
500 words

1000 words
2000 words

Figure 4.6: Article match time versus number of subscriptions and number

of words per article. The median time to match an article is a function of the

number of subscriptions and the number of words per article.

size is just 61 words, so in practice the matching time is much faster: we see a

90th percentile of just 2 ms per article against 1 million subscriptions. Of course, as

the number of incoming articles increases, the overall matching time may become a

performance bottleneck, although this process is readily distributed across multiple

filters.

4.3 Scalability measurements

To demonstrate the scalability of Cobra with a large number of feeds and user

subscriptions, we ran additional experiments using the Utah Emulab testbed. Here,

Chapter 4: Cobra System Evaluation 73

Subs Feeds Crawlers Filters Reflectors

10M 1M 1 28 28
20M 500,000 1 25 25
40M 250,000 1 28 28
1M 100,000 1 1 1

Figure 4.7: Topologies used in scalability measurements. The last topology

(100K feeds, 1M subscriptions) is meant to emulate a topology using the live set of

102,446 feeds.

we are interested in two key metrics: (1) The bandwidth consumption of each tier of

the Cobra network and (2) The latency for an updated article from a source feed to

propagate through the three tiers of the network. In total, we evaluated four different

topologies, summarized in Figure 4.7.

Each topology was generated by the provisioner with a bandwidth constraint of

100 Mbps1, a memory constraint of 1024 MB, and a CPU constraint of the default

value (1x). In addition, we explicitly over-provisioned by 10% as a guard against

bursty traffic or unanticipated bottlenecks when scaling up, but it appears that this

was largely unnecessary. We ran each topology for four crawling intervals of 15

minutes each, and checked the logs at the end of every experiment to confirm that

none of the reflectors dropped any articles (or article contents) to save memory (a

mechanism invoked when available memory runs low, as discussed in Section 3.2.3).

Figure 4.8 shows the total bandwidth consumption of each tier of the Cobra net-

1We feel that the 100 Mbps bandwidth figure is not unreasonable; bandwidth measurements
from PlanetLab indicate that the median inter-node bandwidth across the Internet is at least this
large [92].

Chapter 4: Cobra System Evaluation 74

1M subs
100k feeds

40M subs
250k feeds

20M subs
500k feeds

10M subs
1M feeds

0

100

200

300

400

500

600

700

800

900
Ba

nd
w

id
th

 (K
B/

se
c)

2
.6

1
8
1
.3

3
2
2
.9

7
2
4
.3

2
.6

1
8
2

.7

3
2
5
.4

7
3
0
.0

2
.6

1
8
2

.7

3
2
5
.4

7
3
0
.0Crawler Out

Filter Out
Reflector In

Figure 4.8: Bandwidth consumption of each tier. The bandwidth of each tier is

a function both of the number of feeds that are crawled and of the fan-out from each

crawler to the filters.

work for each of the four topologies evaluated. As the figure shows, total bandwidth

consumption remains fairly low despite the large number of users and feeds, owing

mainly to the effective use of intelligent crawling. Note that due to the relatively large

number of subscriptions in each topology, the selectivity of the filter tier is nearly 1;

every article will match some user subscription, so there is no noticeable reduction

in bandwidth from the filter tier (the very slight increase in bandwidth is due to the

addition of header fields to each article). One potential area for future work is finding

ways to reduce the selectivity of the filter tier. If the filters’ selectivity can be reduced,

Chapter 4: Cobra System Evaluation 75

that will reduce not only the filters’ bandwidth consumption, but also the number of

reflectors needed to process and store the (fewer) articles sent from the filters. One

way to lower filter selectivity may be to assign subscriptions to filters based on sim-

ilarity (rather than the current random assignment); if all of the subscriptions on a

filter tend towards a single, related set of topics, then more articles may fail to match

any those subscriptions.

We are also interested in the intra-network latency for an updated article passing

through the three tiers of the Cobra network. To gather this data, we instrumented

the crawler, filter, and reflector to send a packet to a central logging host every time a

given article was (1) generated by the crawler, (2) received at a filter, (2) matched by

the filter, and (3) delivered to the reflector. Although network latency between the

logging host and the Cobra nodes can affect these results, we believe these latencies

to be small compared to the Cobra overhead.

Figure 4.9 shows a CDF of the latency for each of the four topologies. As the figure

shows, the fastest update times were observed on the 1M feeds / 10M subs topology,

with a median latency of 5.06 sec, whereas the slowest update times were exhibited

by the 250K feeds / 40M subs topology, with a median latency of 34.22 sec. However,

the relationship is not simply that intra-network latency increases with the number

of users; the median latency of the 100K feeds / 1M subs topology was 30.81 sec -

nearly as slow as the 250K feeds / 40M subs topology. Instead, latency appears more

closely related to the number of subscriptions stored per node (rather than in total),

as shown in Figure 4.10.

As mentioned at the end of Section 3.2.2, nodes are able to throttle the rate at

Chapter 4: Cobra System Evaluation 76

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

F
ra

c
ti
o

n
 o

f
a
rt

ic
le

s
 (

C
D

F
)

Intra-network latency (seconds)

100k feeds, 1M subs
250k feeds, 40M subs
500k feeds, 20M subs

1M feeds, 10M subs

Figure 4.9: CDF of intra-network latency for various topologies. This exper-

iment shows that the intra-network latency is largely a factor of the processing load

on filter and reflectors.

which they are passed data from other nodes. This is the primary source of intra-

network latency; article updates detected by crawlers are delayed in reaching reflectors

because of processing congestion on filters and/or reflectors. Since the time for a filter

(or reflector) to process an article is related to the number of subscriptions that must

be checked (see figure 4.6), topologies with larger numbers of subscriptions per node

exhibit longer processing times, leading to rate-throttling of upstream services and

thus larger intra-network latencies. Figure 4.10 shows a clear relationship between

the number of subscriptions per node and the intra-network latencies. However, even

in the worst of these cases, the latencies are still fairly low overall. As the system is

scaled to handle more subscriptions and more users, Cobra will naturally load-balance

Chapter 4: Cobra System Evaluation 77

 0

 10

 20

 30

 40

 50

 60

 70

 200 400 600 800 1000 1200 1400 1600

In
tr

a
-n

e
tw

o
rk

 l
a
te

n
c
y
 (

s
e

c
o
n

d
s
)

Subscriptions per Filter (K)

1M feeds
10M subs

500K feeds
20M subs

100K feeds
1M subs

250K feeds
40M subs

90th-percentile latencies
50th-percentile latencies

Figure 4.10: Intra-network latency as a function of subscriptions per Filter.

This figure shows the relationship between intra-network latency and the number

of subscriptions stored on each Filter (note that in each of these topologies, the

number of filters equals the number of reflectors, and thus the x-axis is equivalent to

“Subscriptions per Reflector (K)”).

across multiple hosts in each tier, keeping latencies low.

Note that the user’s perceived update latency is bounded by the sum of the intra-

network latency once an article is crawled by Cobra, and the crawling interval, that

is, the rate at which source feeds are crawled. In our current system, we set the

crawling interval to 15 minutes, which dominates the intra-network latencies shown

in Figure 4.9. The intra-network latency is in effect the minimum latency that Cobra

can support, if updates to feeds could be detected instantaneously.

Chapter 4: Cobra System Evaluation 78

4.4 Comparison to other search engines

Given the number of other blog search engines on the Internet, we were curious

to determine how well Cobra’s update latency compared to these sites. We created

blogs on two popular blogging sites, LiveJournal and Blogger.com, and posted articles

containing a sentence of several randomly-chosen words to each of these blogs.2 We

then searched for our blog postings on three sites: Feedster, Blogdigger, and Google

Blog Search, polling each site at 5 sec intervals.

We created our blogs at least 24 hours prior to posting, to give the search engines

enough time to index them. Neither Feedster nor Blogdigger detected any of our

postings to these blogs, even after a period of over four months (from the initial

paper submission to the final camera-ready). We surmise that our blog was not

indexed by these engines or that our artificial postings were screened out by spam

filters used by these sites.

Google Blog Search performed incredibly well, with a detection latency as low

as 83 seconds. In two out of five cases, however, the latency was 87 minutes and

6.6 hours, respectively, suggesting that the performance may not be predictable. The

low update latencies are likely the result of Google using a ping service, which receives

updates from the blog site whenever a blog is updated [9]. The variability in update

times could be due to crawler throttling: Google’s blog indexing engine attempts to

throttle its crawl rate to avoid overloading [62]. As part of future work, Cobra could

be extended to provide support for a ping service and to tune the crawl rate on a

2An example posting was “certified venezuela gribble spork.” Unsurprisingly, no extant blog
entries matched a query for these terms.

Chapter 4: Cobra System Evaluation 79

per-site basis.

We also uncovered what appears to be a bug in Google’s blog indexer: setting our

unique search term as the title of the blog posting with no article body would cause

Google’s site to return a bogus results page (with no link to the matching blog),

although it appears to have indexed the search term. Our latency figures ignore

this bug, giving Google the benefit of the doubt although the correct result was not

returned.

In contrast, Cobra’s average update latency is a function of the crawler period,

which we set at 15 minutes. With a larger number of crawler daemons operating

in parallel, we believe that we could bring this interval down to match Google’s

performance. To our knowledge, there are no published details on how Google’s blog

search is implemented, such as whether it simply leverages Google’s static web page

indexer.

4.5 Comparison to Prior Work

Its useful at this point to identify some of the ways that Cobra differs from pub-sub

systems (§2.4.1). These are important to recognize because the Cobra query interface

– a simple boolean expression over content keywords – can be supported by each of

the content-based pub-sub systems previously discussed. Thus, at first glance it may

appear that Cobra’s functionality could be supported by most or all of these systems.

However, Cobra differentiates itself from these systems in two other ways.

First, distributed content-based pub-sub systems such as Siena leave it up to the

network administrator to choose an appropriate overlay topology of filtering nodes.

Chapter 4: Cobra System Evaluation 80

As a result, the selected topology and the number of servers may or may not perform

well with a given workload and distribution of publishers and subscribers in the

network. Cobra provides a separate provisioning component that outputs a custom-

tailored topology of processing services, ensuring that Cobra can support a targeted

work load. Our approach to system provisioning is independent from our application

domain of RSS filtering and likely could be used to provision a general-purpose pub-

sub system like Siena, as long as appropriate processing and I/O models are added

to the service provisioner.

Second, Cobra integrates directly with existing protocols for delivering real-time

streams on the Web — namely, HTTP and RSS. Most other pub-sub systems such

as Siena do not inter-operate well with the current Web infrastructure, for example,

requiring publishers to change the way they generate and serve content, and requiring

subscribers to register interest using private subscription formats.

4.6 Summary

Our evaluation of Cobra shows that, with modest hardware resources, our design

scales to large numbers of monitored feeds and user subscriptions. For example, 51

Emulab nodes are able to support 20 million subscriptions while crawling 500,000

feeds every 15 minutes. Through intelligent crawling and content hashing, crawlers

are able to reduce incoming bandwidth by 57% and outgoing bandwidth by 99.8%.

Our locality-aware placement reduces the average crawl time by 18%. Finally, the

intra-network latency is on the order of 10s of seconds (dictated primarily by the

number of subscriptions per filter), and thus dominated by typical crawling intervals.

Chapter 5

Designing and Measuring an

Outdoor Wireless Testbed

5.1 Motivation

Another application area of interest is gathering data from a city environment. A

sampling of existing projects demonstrates the variety and richness of data sources

found in urban settings:

• London Congestion Pricing : using cameras to recognize license plates, addi-

tional fees are charged to those driving in central London during peak hours [15]

• Skyhook Wireless : by querying a database containing the locations of over 100

million wireless networks, mobile devices can estimate their geographic location

using whatever wireless networks are observed nearby [21]

• Fade To Black : a network of upturned web-cams record pollutant depositions

81

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 82

(causing the camera images to quite literally fade to black over time) [7]

• Sniper Localization: networks of acoustic sensors detect and localize in 3-

dimensions the source of gunshots in complex urban environments [131]

The overall goal of the CitySense [106] project is to support the development and

evaluation of novel sensor networks on an urban scale. Substantial cost and effort are

required to design, deploy and evaluate wireless sensor systems at scale; many research

groups must be content with simulations or small-scale, homegrown test deployments.

By serving as a multi-purpose, programmable platform, CitySense “lowers the bar”

for the deployment and evaluation of new systems for urban sensing. Unlike the

mesh networks mentioned previously, CitySense explicitly is not intended to serve as

a platform for community wireless Internet access; such a goal would greatly limit

the kinds of research that users could perform on the network. In other words, our

goal is to support disruptive research that would interfere with the network’s ability

to serve as a reliable provider of Internet connectivity.

To our knowledge, CitySense is the first general-purpose urban-scale sensor net-

work. Currently, selected CitySense nodes feature a mix of multi-variate weather

(measuring precipitation, wind speed/direction, etc.) and CO2 sensors. Addition-

ally, nodes’ 802.11 radios can serve as a surprisingly useful “sensor” of sorts. The

Argos system (ch. 6-7) uses the radio in a sniffer role to collect and analyze ambient

WiFi traffic. However, one could also imagine sniffing wireless traffic as a way to

gain insight into other phenomena. For example, tracking mobile devices could give

an idea of people’s movement patterns, or tracking vehicle-borne networks (WiFi is

increasingly available in taxis and buses) could reveal traffic conditions. Finally, one

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 83

can imagine many other interesting data streams within the urban environment, such

as noise levels and air pollution.

In order to achieve the geographic coverage required by many sensing applica-

tions, CitySense nodes are widely deployed. This enables rich data collection, but

also means that many nodes are installed in hard-to-reach locations, such as the

tops of streetlights. Thus, many nodes were deployed with (1) wireless-only network

connectivity (due to a lack of wired network access), and (2) greatly limited phys-

ical access. These challenges informed our approaches to designing and operating

the CitySense network, as reliability, transparency (e.g., for remote debugging), and

network efficiency were of paramount importance.

The impetus for CitySense arose from recent work on city-wide wireless mesh

networking, including the RoofNet [30], CUWin [4], and TFA [50] projects to pro-

vide connectivity to communities using inexpensive wireless equipment. While those

projects were focused on the networking layer for providing general-purpose Internet

connectivity, the key realization is that mesh router nodes (often based on embedded

Linux PCs) could be augmented with a range of sensors as well as opened up to

remote programming by end users.

In the following sections we present the overall architecture of CitySense, followed

by measurement results characterizing the performance and stability of the network.

5.2 Architecture

CitySense consists of the following primary components:

1. a collection of 802.11-equipped single-board computers (“nodes”), deployed

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 84

Figure 5.1: Map of the CitySense network in Cambridge, MA. The area

shown is just under 7x5 km.

throughout an urban environment

2. a wireless mesh backhaul network used for communication between nodes

3. backend support servers (web server, database, etc.) for managing nodes’ in-

stalled software, stored collected data and the like

CitySense currently consists of 27 wireless nodes deployed on streetlights and

rooftops around Cambridge and Somerville, MA in four (disconnected) clusters to-

gether spanning over 9.7 km2 (see Figure 5.1). Each node consists of either a Soekris

net4826 (233 MHz CPU, 128 MB of RAM) or ALIX 2c2 (500 MHz CPU, 256 MB of

RAM) single-board computer, powered either directly from the streetlight mounting

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 85

Figure 5.2: CitySense node deployed on a street lamp. The thick antenna

pointing downwards on the right side is connected to the 900MHz backhaul radio,

and the thinner antenna on the left side is connected to the 802.11 sniffer radio. The

node is powered from the streetlight.

or from rooftop electric sockets. Both configurations use a Wistron CM9 802.11a/b/g

mini-PCI radio with an 8 dBi omnidirectional antenna and a Ubiquiti XR9 900 MHz

mini-PCI radio with a 6 dBi omnidirectional antenna. The XR9 is a high-powered

radio designed for long-range operation, with a peak transmission power of 28 dBm.

It uses the standard 802.11 MAC and PHY, albeit in a nonstandard frequency band,

with PHY rates up to 54 Mbps. Figure 5.2 shows one of our nodes deployed on a

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 86

streetlight.

A small number of the deployed nodes have wired Ethernet access, but for the

remainder the only available network access is via the nodes’ equipped radios. To

enable connectivity, each node runs the OLSR-NG [18] mesh routing protocol on

the high-power XR9 radio. This enables IP-level routing throughout the network,

allowing nodes to communicate with each-other, as well as with the backend servers

(by routing via a nearby Ethernet-equipped node). The lower-power CM9 radio does

not participate in the wireless mesh and instead is provided for use by experimenters.

Each node runs a custom FreeBSD image as its operating system. A series of

backend applications were developed for managing the creation of new OS images

and their distribution, over the wireless mesh, to deployed nodes (since it would be

infeasible to retrieve each node for every OS update). Although much more can be

said about this sophisticated system and the steps it takes to avoid errors (retrieving

a “bricked” node can be quite time consuming), its development was primarily the

responsibility of other CitySense team members and thus a more detailed description

is out of place in this dissertation.

5.3 Urban Deployment Considerations

The outdoor urban environment presents several challenges to the design of a

wireless network of sensors. These include: physical environment factors, network

coverage, and network security.

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 87

5.3.1 Physical environment

Extreme weather, theft and vandalism, and malfunctioning hardware are realities

that we expected to face when deploying in an outdoor urban environment. Each

node is housed in a NEMA 6x-rated weatherproof enclosure, which provides both

protection from the elements as well as a small degree of insulation during winter.

We have not encountered any cases of theft or vandalism, although on occasion nodes

that draw power from indoors (e.g., via power cables snaked down ventilation shafts to

the top floor) have been unplugged by unwitting occupants. Hardware malfunctions

have been observed in almost every possible component, including fried Soekris/ALIX

boards, wedged network hubs, and a variety of bad cables and loose connections.

The physical environment also directly affects nodes’ wireless communications.

Urban settings feature dense collections of buildings, oftentimes of various heights and

sizes, which greatly complicate signal propagation patterns. Additional environmental

complications include various signal absorbers (e.g., humans, trees), signal reflectors

(e.g., metal roofs, fences) and sources of wireless interference (e.g., WiFi devices,

cordless phones). A variety of studies have examined these effects on 802.11 radios [30,

50, 45], showing that urban environments severely limit the effective communication

range.

It is illustrative to consider how existing urban and rural mesh networks differ;

Table 5.1 provides a sampling of each. The urban networks are all much more densely

deployed, with links roughly 100 times shorter than those supported in the rural

networks. There are two main reasons why urban networks require this density:

1. Obstructions - Urban nodes frequently do not have line-of-sight connections

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 88

Type Network Nodes Link Lengths
urban CitySense 27 50-250 meters
urban Roofnet [42] 38 50-400 meters
urban Google WiFi [77] 482 100-200 meters
rural WiLDNet (Aravind) [136] 10 5-15 km
rural WiLDNet (AirJaldi) [136] 10 10-41 km
rural Digital Gangetic Plains [41] 13 5-39 km

Table 5.1: Comparison of existing urban and rural wireless mesh networks.

“Link Lengths” describes the majority of the wireless links in that network.

to neighboring nodes, which reduces link quality. Rural settings are relatively

free of obstructions, enabling long distance line-of-sight links.

2. Omnidirectional Antennas - Relative to directional antennas, omnis sacri-

fice range for the ability to communicate in any direction1. This is important

in urban settings where it’s often difficult to know a priori (i.e., when first de-

ploying nodes) which links will be strongest. The reason for this is that urban

environments often affect wireless signals unpredictably. For example, in an

open area (e.g., most rural settings), shorter links are nearly always stronger

than longer ones. In complex, urban settings, however, this is often not the

case; rarely is distance strongly correlated with link quality [30, 50, 88]. Using

omnidirectional antennas may reduce nodes’ communication ranges, but allows

them a diversity of neighbors so that the strongest links can be used.2

1Any direction in the xy-plane, that is; communicate up or down is very limited

2An added benefit of the neighbor diversity that omnis provide is greater robustness to link
failures.

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 89

5.3.2 Network Coverage

Streetlight mounting benefits network connectivity between CitySense nodes in

two ways. First, it leverages the natural line-of-sight paths provided on the straight

parts of roadways. Second, the uniform mounting height, roughly 10 meters above

the street level, helps RF reception range by reducing the strength of the ground

reflected signal as well as the probability of interference from non-CitySense ground-

based RF emitters such as WiFi radios in private laptops and access points. Rooftop

mounts, of course, do not realize these benefits (although rooftop-mounted nodes are

far from street-level reflections, they instead need to contend with reflections off the

roof itself).

To ensure that mesh connectivity is maintained in the face of unplanned node

outages, we deployed nodes such that the inter-node spacing would be roughly less

than half the range for the radios. This ensures RF overlapping such that two nodes

will not lose connectivity should a single intermediate node fail. Actual placement

locations, of course, are heavily influenced by the availability of deployment sites. This

is particularly true for clusters of rooftop-mounted nodes, as some entire buildings

are off-limits to us due to technical (e.g., no power sources available) or social (e.g.

we could not secure appropriate approvals) reasons. On average, each CitySense node

reports 4.5 neighbors3, which leads to a good amount of redundancy in the face of

node or link failures.

3Here we define a node’s neighbors simply as all nodes that are 1-hop away in IP routing, as
determined by the OLSR mesh routing protocol. In most cases, a node is also able to communicate
(to some degree) with some other nodes, but these links are weak enough that OLSR chooses to
route to those nodes via better-connected intermediaries.

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 90

5.3.3 Network Security

Security and interference are critical concerns in urban environments where many

private 802.11 networks may exist. CitySense uses a two-layer approach to security.

At the link layer, we employ WEP encryption to deter snooping by passive listeners.

Although WEP keys can be cracked fairly easily by knowledgeable attackers [138],

WEP encryption still helps deter the casual snooper. Additionally, the mesh radio

operates in a nonstandard 900 MHz frequency band, which both eliminates all inter-

ference from ambient WiFi devices4, as well as further frustrating the casual snooper.

As a second, more robust layer of defense, applications typically use a secure transport

layer protocol, e.g., SSL or SSH, for inter-node communication.

5.4 Network Measurements

This section evaluates the CitySense testbed’s network performance using a dataset

of point-to-point TCP and Ping measurements. The TCP measurements were ob-

tained using the Iperf bandwidth measurement tool [11] (v2.0.4), while Ping mea-

surements were obtained using the ping utility of FreeBSD 7.1-STABLE. Measure-

ments were performed nightly between all unique ordered pairs of nodes (one at a

time, to avoid interference between simultaneous tests). For TCP, we recorded the

mean throughput achieved over a 60-second Iperf measurement; if no connection

could be established, a value of 0 was recorded (this occurred in < 5% of cases). For

4Other devices, such as cordless phones or 802.15.4 radios, may operate in the 900 MHz band
and thus cause interferences, but these are unlikely to be numerous or powerful enough to cause an
appreciable effect on the network.

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 91

Ping, we recorded the mean round-trip time over 10 packets; overall, 25% of packets

we lost (these did not contribute to the mean RTTs recorded). For each path’s TCP

and Ping measurements, we removed the extreme values (largest and smallest 5%) to

ensure that spurious measurements were not included (such as those obtained during

short-lived routing misconfigurations or transient hardware failures).

Network measurements have run continually since June, 2008. Since that time, the

network has undergone many changes, including deployments of many more nodes,

occasional node retrievals (e.g., for repairs), numerous software updates, and various

changes to networking and routing parameters. Any of these can affect measured

networking performance and thus care must be taken when comparing measurement

data over long timescales. For consistency of analysis, the data presented here was

collected over 5 months in 2009 during which time no major changes to the network

occurred.

Figure 5.3 shows that physical distance is generally not a good predictor of either

throughput or latency; this is likely due to the urban environment’s affect on wireless

signals (as discussed above) which can have a greater impact on signals than simple

free-space path loss. This result is in line with previous studies of urban wireless

communications, including the TFA-Wireless mesh [50], the Roofnet mesh [30], and

the Dartmouth College infrastructure network [88].

5.4.1 TCP Throughput

Figure 5.4(a) shows the wide range of TCP performance that we observe. Most

multi-hop paths are concentrated at the low end (≤ 3 Mbps) whereas single-hop

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 92

0.0 0.1 0.2 0.3 0.4 0.5
Distance (km)

0

5

10

15

20

M
e
a
n
 T

C
P
 T

h
p
t

(M
b
p
s) 1-Hop Paths

(a)

1.0 1.5 2.0 2.5 3.0
Avg. Path Length

0

10

20

30

40

50

60

70

M
e
a
n
 P

in
g
 L

a
te

n
cy

 (
m

s)

(b)

Figure 5.3: Scatter plot showing the relationship of distance versus mean

TCP throughput (left) and Ping latency (right) across all single-hop net-

work links.

paths are distributed more evenly throughout the full range. This trend of most

paths concentrating at the lower bandwidths was also observed by the Bicket et al.

in the Roofnet network [42].

The stability of each link’s TCP performance is also of interest. As shown in

Figure 5.4(b), the standard deviations of CitySense paths are mostly in the range

of 0.5 Mbps to 3 Mbps, with a small number of particularly unstable paths up to

5 Mbps. 1-hop paths are roughly 0.5 Mbps more stable than all paths considered

together.

Finally, it is also useful to consider the coefficient of variance (the ratio of standard

deviation to mean) for each path. A standard deviation of 1 Mbps, for example, is

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 93

0 5 10 15 20
Mean TCP Thpt (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

1-Hop Paths

All Paths

(a)

0 1 2 3 4 5 6
StdDev of TCP Thpt (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

1-Hop Paths

All Paths

(b)

Figure 5.4: CDF plots showing the distributions of the TCP means (left)

and standard deviations (right) over all paths in the CitySense network.

much more significant on a path that averages only 1.5 Mbps versus on a path that

averages 20 Mbps. The coefficient of variance provides a way of comparing TCP

stability across both high- and low-bandwidth paths.

Figure 5.5 shows a CDF of the TCP coefficient of variance across all paths. Most

paths show significant variability; 66% of paths have a coefficient between 0.28 and

0.53 and only 3% of paths have a coefficient less than 0.1. Overall, we conclude

that the typical TCP performance of CitySense is comparable or slightly better than

that reported for other deployed wireless mesh networks, including Roofnet and TFA-

Wireless. However, very few paths show strongly consistent TCP performance, sug-

gesting that long-lived applications should be prepared for significant throughput

variability over time. Section 5.4.3 explores some implications of this.

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 94

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Coeff. of Var. of TCP Thpt

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
1-Hop Paths

All Paths

Figure 5.5: CDF plot showing the distribution of the TCP coefficient of

variance over all paths in the CitySense network.

5.4.2 Ping Latencies

Figure 5.6 shows that the latencies of most paths (> 80%) have means and stan-

dard deviations both under 20 ms. These means are comparable to those reported

for Roofnet5. A handful of paths show poor performance and stability (e.g. one path

averages 63.7 ms latency with a standard deviation of 128.3 ms).

Figure 5.5 shows a CDF of the Ping coefficient of variance across all paths. Over-

all, paths show greater Ping variability than TCP variability; 80% of paths have a

coefficient between 0.5 and 1.5.

5Latencies are not reported for TFA-Wireless.

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 95

0 10 20 30 40 50 60 70
Mean Ping Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

1-Hop Paths

All Paths

(a)

0 10 20 30 40 50 60 70
StdDev of Ping Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

1-Hop Paths

All Paths

(b)

Figure 5.6: CDF plots showing the distributions of the Ping means (left)

and standard deviations (right) over all paths in the CitySense network.

For legibility, the x-axis of (b) is truncated; both CDFs on that plot extend

to a maximum of 174.8 ms.

5.4.3 Implications for Applications

The implications of the CitySense network’s performance is, by necessity, application-

dependant, but we can nonetheless draw some general conclusions. Generally, appli-

cations must contend with two factors: (i) bandwidth and latency vary significantly

across paths (spatial variance; figures 5.4(a) & 5.6(a)), and (ii) in many cases, the

bandwidth and latency of a single path vary significantly over time (temporal vari-

ance; figures 5.5 & 5.7).

Spatial Variance

The “average path” in CitySense supports a bandwidth of 4.4 Mbps with a la-

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 96

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Coeff. of Var. of Ping Latency

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
1-Hop Paths

All Paths

Figure 5.7: CDF plot showing the distribution of the Ping coefficient of

variance over all paths in the CitySense network.

tency of only 10 ms, but applications clearly cannot expect this level of performance

between all nodes pairs since paths vary significantly. At the same time, provisioning

for the least-capable path would lead to inefficient use of the network’s resources.

Instead, applications should expect to adapt to a range of network conditions. For

example, a sensor network application could tune its data aggregation or sampling

rate independently for each node, according to the node’s observed network capacity.

In this way, well-connected nodes will return richer (i.e. more frequent and/or larger)

data samples whereas poorly connected nodes will return less frequent and/or smaller

data samples to avoid saturating their network connection.

Temporal Variance

Applications, particularly long-running ones, also must handle changes in network

performance due to temporal variations. As an example, consider an application fea-

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 97

turing real-time, cross-network (i.e. server to node) user interactions. In such appli-

cations, there is a limit to the amount of latency that a user will tolerate; e.g., 100

milliseconds is an oft-cited latency threshold for whether or not users can perceive

a delay after issuing a command [101]. Although all paths averaged < 100 ms on

our ping test (Figure 5.6(a)), it was not rare for individual ping packets exceed this

latency. Recall that each ping measurement consisted of 10 ping packets; in 3% of all

ping measurements, the mean RTT (across all 10 packets) was ≥ 100 ms and in 8%

of all ping measurements, the maximum RTT was ≥ 100 ms. Even more dramati-

cally, 0.4% and 1.3% of measurements had a mean RTT and max RTT ≥ 1 second,

respectively. Its worth noting that these slow measurements were not concentrated

in just a few paths, as one might expect. On the contrary, over half of paths (58%)

recorded at least one measurement with a mean RTT ≥ 100 ms, and no single path

accounted for more than 3% of the 100+ ms measurements.

To summarize, although all paths have fairly low latencies (< 100 ms) on average,

most paths occasionally observe individual packet RTTs high enough to be of concern

in certain applications. Interactive applications therefore must be able to handle

occasional latency spikes noticeable or even disruptive to users. Our experiences using

SSH [146] support this conclusion. SSH is our primary method of accessing CitySense

nodes6 and is frequently used to query/configure node state and start/stop/manage

background processes. We have found that SSH works well for these kinds of short-

duration sessions, but can be unreliable for long-duration sessions due to timeouts.

6When necessary (e.g. if network connectivity is lost), nodes can be accessed via serial connection,
but this requires physical access and thus is a last resort.

Chapter 5: Designing and Measuring an Outdoor Wireless Testbed 98

5.5 Summary

CitySense represents a unique combination of urban-sensing platform and outdoor

wireless networking testbed. As a sensor network, CitySense offers potential access to

a variety of urban data sources, including microclimate conditions, air quality, noise

levels, and ambient wireless network traffic. As a networking testbed, CitySense offers

researchers the ability to deploy and test new protocols and distributed systems in

a setting with authentic urban effects (reflections, multipath fading, etc.) that are

notoriously difficult to model accurately in simulation or synthetic testbeds.

Chapter 6

Argos Architecture

6.1 Introduction

Wireless networks are becoming the de facto access network for many Internet

users, stemming from the tremendous growth in the use of laptops, smartphones,

and other mobile devices. Even many desktop systems come equipped with 802.11

interfaces and can be used without a wired Ethernet connection, and devices such

as Apple’s Time Capsule permit automated backup over a wireless connection. As a

result, the performance and behavior of wireless networks are critical for supporting

the Internet. At the same time, growth in wireless network deployments, especially

in densely populated urban settings, has been tremendous. A city block might have

hundreds of separate access points and thousands of wireless clients. Of course, all of

these devices must share limited ISM spectrum, leading to potentially high congestion.

Yet, we have little understanding of what wireless network traffic looks like “in

the wild” at urban scales, with many access points and clients interacting. There are

99

Chapter 6: Argos Architecture 100

many open questions that we would like to answer: What are the characteristics of

wireless network traffic? How does traffic vary over space and time? Is there evidence

of malware or other malicious traffic traversing the airwaves? Can we characterize

user mobility patterns, and what can we learn about individual clients?

This chapter describes Argos, a city-wide wireless sensor network designed to

study wireless network traffic and dynamics over urban scales. Argos collects data

from multiple WiFi sniffers mounted on streetlights and rooftops around a city and

performs decentralized trace merging and filtering to support multiple user queries

processing the captured traffic. Argos sensor nodes are themselves connected with a

backhaul wireless mesh network (in an orthogonal frequency band) to enable scala-

bility and large spatial coverage. Using 26 nodes of the CitySense testbed (see ch. 5)

deployed outdoors around Cambridge, MA, we present the first city-wide study of

wireless network traffic dynamics, comprising 2630 access points and 65,073 unique

clients spanning an area of 9.7 km2.

Within the overall context of this dissertation, the design of Argos builds upon our

experience developing Cobra in multiple ways. Both systems implement query inter-

faces tailored to their particular application needs, although, for Cobra, this meant a

relatively simple, keyword-based interface. In contrast, Argos queries require a much

richer interface, including mechanisms for requesting various different kinds of packet

streams and for changing the sniffer radio channel according to different policies. In

both Cobra and Argos, efficient data collection is vital for achieving good scalability,

although for different reasons; Cobra seeks to minimize the physical resources required

to support a given workload (number of data sources and consumers) whereas Argos

Chapter 6: Argos Architecture 101

seeks to maximize the number of data sources that it can capture from, subject to

the sniffer network’s bandwidth capacity.

We recognize that passive monitoring of wireless networks raises numerous privacy

concerns. Indeed, Google has recently found itself under fire for inadvertent packet

captures from their Street View cars [129]. Argos anonymizes captured packet traces

to protect against obvious user privacy violations, but we recognize that this does not

eliminate all risks, and that reconciling the conflicting goals of data collection and

user privacy will be an ongoing effort.

6.2 Background and Motivation

The vast growth of wireless LANs has led to new challenges for characterizing

traffic and user behavior, as well as understanding the complex dynamics underlying

the interaction between multiple access points and clients. Up until now, studies

have focused on either microscopic analyses of individual networks (say, in an office

building [60, 98]), wardriving studies that take a static snapshot of network deploy-

ments [32, 81], or macroscopic analyses of isolated mesh networks [28, 30]. The

performance, behavior, and variation of wireless networks “in the wild” has never

been studied at the urban scale.

This trend has created new difficulties for wireless networks. Increasing density

can induce severe performance problems when multiple users share the same limited

radio spectrum. Given the cooperative nature of 802.11 MAC protocols, it is possible

for buggy implementations or malicious users to hog the spectrum. Likewise, the

shared nature of the RF medium means that the efficiency of spectrum utilization is

Chapter 6: Argos Architecture 102

a real concern. Malware that blasts a large number of packets or bandwidth-hogging

file-sharing applications can cause performance problems for many nearby users. New

applications and mobile devices are putting increasing pressure on wireless networks

and leading to new user behaviors, such as free-riding on open networks.

There is also a serious concern about privacy and security of wireless LANs. The

existing encryption standards, such as WEP and WPA2 [83], have all been shown

to have weaknesses [80, 138], and it is possible to break WEP keys in a matter of

minutes [44]. Moreover, many networks are unencrypted [48], so absent some form

of end-to-end encryption, user traffic travels over the airwaves in the clear. Even in

encrypted networks, it is possible to fingerprint individual wireless users based on

leaked information, such as 802.11 probe requests [110]. A variety of end-user tools

exist to capture wireless traffic, break encryption keys, and perform spoofing, denial-

of-service and other attacks [1, 16, 26]. One of the goals of this chapter is to highlight

the privacy risks that arise with large-scale, coordinated traffic snooping.

6.2.1 Why Argos?

The goal of Argos is to enable urban-scale monitoring of wireless networks, per-

mitting multiple users to execute queries against the captured traffic. To achieve

high spatial coverage, this requires multiple sensor nodes deployed throughout a city

that can capture ambient wireless network traffic and perform filtering, aggregation,

and trace merging with other sensors. To protect the privacy of users, sensor nodes

should anonymize their raw traffic traces to remove sensitive information. To ensure

scalability, sensor nodes should not require a wired back-channel, and preferentially

Chapter 6: Argos Architecture 103

use a scalable wireless mesh to communicate with each other and the Internet.

A wide range of potential users would find value in a citywide wireless monitor-

ing network. Wireless networking researchers can conduct detailed studies of traffic

dynamics and network performance in a complex urban setting. Captured packet

traces can be used to drive new protocol and system designs rather than relying on

synthetic traffic that may not exhibit realistic behavior. Security researchers can use

Argos to understand privacy and security risks inherent in wireless networks, such as

the presence of malicious traffic and privacy leakage through side-channels. Finally,

researchers in fields such as sociology and anthropology have an increasing interest in

understanding wireless network traffic and user behaviors, such as characterizing the

popularity of online media sources or Web search patterns across different parts of a

city.

6.2.2 Challenges

There are many challenges associated with deploying a city-wide wireless moni-

toring network. Firstly, individual sniffer nodes often exhibit relatively poor packet

capture rates. In a sparse, outdoor deployment, it is unlikely that we will be able to

capture packets from a given source (client or access point) with high fidelity. Unlike

dense indoor monitoring studies, where 99% or more of the traffic can be captured,

in an outdoor sniffer network the typical capture rates are on the order of 5-10%.

This requires that sniffers merge their packet traces to increase coverage, and new

techniques that we develop to infer missing data and recover useful information from

an extremely lossy data stream. Although many Argos queries focus only on high-

Chapter 6: Argos Architecture 104

level, aggregate observations of wireless network activity, when “drilling down” into a

particular source or packet stream is called for, we can improve capture coverage by

coordinating between multiple sniffer nodes. For example, multiple sniffers in an area

can synchronize their channel hopping schedules to maximize the joint probability of

collecting packets from a given source.

Secondly, the system should scale up to many sniffers deployed across a large urban

area. It is unreasonable to expect every sniffer node to have a wired connection to

the Internet; this would substantially limit the locations at which sniffers could be

installed and increase deployment cost and management overhead. For this reason,

Argos makes use of wireless mesh networking to enable connectivity between sniffers

and the Internet. The mesh backhaul uses an orthogonal frequency band (900 MHz)

to avoid interference with the traffic sources being monitored. However, this gives rise

to a related challenge in that wireless mesh networks are typically quite bandwidth-

constrained, and the total amount of traffic being captured by a set of sniffers may

exceed the capacity of the mesh. In our deployment, the backhaul mesh links range

from a few Mbps to just a few hundred Kbps. For this reason, it is generally not

possible to send the raw packet traces back to a central server for processing; as

in many conventional sensor networks, filtering and aggregation must be performed

within the sniffer network itself.

Thirdly, there is substantial diversity in the ambient wireless traffic present through-

out a city, ranging from home networks with a small amount of traffic to large,

enterprise-wide wireless LANs supporting thousands of users. The spatial distribu-

tion of wireless LANs is highly irregular and temporal diversity is seen across multiple

Chapter 6: Argos Architecture 105

timescales. In addition, increasing diversity of the client device population, including

(mostly) static laptops to highly mobile smartphones, makes it challenging to obtain

a clear picture of traffic patterns.

6.3 Argos Architecture

Argos utilizes a two-tier architecture consisting of multiple sniffer nodes and a

single central server. Sniffer nodes are interconnected via a backhaul network, such as

a wireless mesh, allowing sniffers to communicate with each other as well as the central

server. Sniffers capture wireless traffic and perform local filtering and processing on

the raw packet streams. In addition, sniffers can perform in-network traffic merging

to merge their individual streams, increasing capture fidelity. Results from queries

are delivered to the central server where they are conveyed to the user. Figure 6.1

shows the architecture of a single sniffer node; the remainder of this section details

each component.

6.3.1 User Queries

In Argos, wireless packet streams are processed by user queries. Multiple concur-

rent queries can execute on the Argos network at one time. Relatively few constraints

are placed on the structure of queries, allowing for a wide variety of applications. Sim-

ple examples include generation of summary statistics over a sliding time window or

filtering packets according to header fields.

Each query consists of two dataflow graphs composed of packet-processing opera-

tors: a sniffer dataflow, which is replicated on each of the sniffer nodes, and a server

Chapter 6: Argos Architecture 106

Figure 6.1: This block diagram shows how packets flow through a single

Argos sniffer. Starting with packet capture from the sniffer radio in the lower left,

packets are passed up the chain of processing elements. At each step, a tap provides

access to the packet stream at that point for any interested user queries.

dataflow which is executed only on the central server. Each sniffer dataflow instance

receives input packets from the Argos node on which it is running via one or more

taps and sends results (via the backhaul network) to the server dataflow. The server

dataflow may perform additional processing or aggregation on the results received

from the sniffers, as well as log the output of the query and report the results to the

user.

Each Argos sniffer provides five taps by which sniffer dataflows can receive packets,

based on what degree of preliminary processing is desired. The raw tap provides

packets as soon as they are captured by the local interface. The aggregated and

merged taps provide packets after any duplicate captures are aggregated and then

Chapter 6: Argos Architecture 107

merged from multiple sniffer nodes, as described below. The IP and TCP taps

provide defragmented IP datagrams and reconstructed TCP sessions, respectively.

Many queries make use of only a single tap, but in some cases combinations of multiple

taps are useful.

User queries are implemented using the Click software router [86], which provides

a rich set of interfaces for network packet processing. A query’s sniffer and server

dataflows are written directly in the Click language. Each query also specifies a small

number of configuration and performance-related parameters, including the list of

network taps that the sniffer dataflow uses. For each specified tap, the dataflow must

have one input over which Argos will pass the appropriate packets. Any packets

output by the dataflow are automatically transferred over the backhaul network to

the central server and passed as input to the query’s server dataflow. This allows

easy aggregation of results from the entire sniffer network without having to deal

with explicit network connections between sniffers and the central server.

6.3.2 Sniffer Nodes

Argos sniffer nodes consist of single-board PCs coupled with one or more 802.11

radios for packet capture. Our prototype runs on the CitySense network (detailed in

Section 5.2), with each node using a Wistron CM9 802.11a/b/g radio with an 8 dBi

omnidirectional antenna for packet capture. Each node runs an instance of the Argos

sniffer process, which accepts raw captured packets from the operating system, per-

forms in-network processing (as described below), and emulates a TCP/IP network

stack (for IP defragmentation and TCP stream reconstruction). Packet capture is

Chapter 6: Argos Architecture 108

performed using the standard libpcap [22] interface provided by the OS. The wire-

less device driver prepends each captured packet with a radiotap pseudo-header [20],

which includes fields such as the received signal strength and type of physical layer

modulation used.

Anonymization: Argos sniffers support a range of data anonymization mech-

anisms to prevent private information from leaking into user queries. At present,

use of these mechanisms is optional, since we have not yet opened our prototype up

to external users. Argos implements widely-accepted techniques for masking source

and destination MAC addresses and IP addresses through hashing [111]. In addition,

Argos can optionally drop arbitrary portions of a captured packet including individ-

ual header fields and the entire payload. Of course, the impact of these techniques

depends very much on the semantics of the query, and there is no one-size-fits-all

approach that will work for all queries. We are currently investigating the use of a

stronger differential privacy guarantee that will prevent Argos queries from leaking

information about specific users (§8).

Wireless mesh backhaul: Sniffers are interconnected via a backhaul network

that provides them with connectivity to each other and the central server. Depend-

ing on the deployment scenario, a wide range of backhaul network options are pos-

sible. Direct Ethernet connectivity to sniffers may be possible in some situations,

although the cost can become prohibitive, especially for sniffers deployed on rooftops

and streetlights in a city, which is our focus. Cellular or WiMax connections may also

be possible, although they incur additional subscription costs and would not enable

direct connectivity between sniffers. Also, most current commercial offerings have

Chapter 6: Argos Architecture 109

fairly limited uplink capacity (< 1 Mbps) [85, 141].

In Argos, we focus on the use of wireless mesh as a cost-effective and scalable

backhaul network solution. Wireless mesh has been widely studied and deployed in a

number of research and commercial settings [4, 8, 29, 42]. Given the reasonably close

spatial proximity of most Argos sniffers, mesh is a good choice for interconnectivity,

and can be deployed at low cost with no recurring fees. Mesh also allows sniffer nodes

to communicate directly with each other to enable cross-sniffer collaboration, such as

in-network merging of packet streams captured from multiple sniffers.

Of course, it is important that the wireless mesh backhaul does not interfere with

the ambient traffic being monitored by Argos. In our prototype, the wireless mesh

uses a secondary radio operating in a different frequency band (900 MHz) than the

sniffer radio, to ensure that there is no crosstalk. The mesh itself is also an 802.11

network but operates in the non-standard frequency band and provides up to a few

Mbps of throughput on each link.

6.3.3 In-network Traffic Processing

Given that an individual sniffer will only receive a partial view of the traffic

from a given source, merging the packet streams from multiple sniffers can enable

higher packet coverage. Merging also removes duplicates, which is important for the

accuracy of some queries. Yeo et al. [145] were the first to use this technique and

it has since been used by other wireless network monitors [60, 98]. In each of these

systems, every sniffer sends its raw packet stream to a central server for merging,

which is only viable for indoor environments with ample backhaul network capacity.

Chapter 6: Argos Architecture 110

However, such a centralized approach is unsuitable for large-scale outdoor sniffer

networks with constrained backhaul network capacity. Even with compression, the

volume of captured traffic can overload the backhaul network, leading to substantial

packet loss. Likewise, the centralized approach does not scale as the number of sniffers

and network diameter increase.

To address this problem, we develop an approach to in-network traffic processing

that attempts to balance the traffic load on each backhaul network link to minimize

saturation and packet loss. The idea is to logically partition the global packet stream

so that each sniffer node is responsible for some disjoint fraction of the stream. Sniffers

forward each captured packet to its designated aggregator node, which (a) merges the

partial streams it receives, and (b) processes the merged packets by executing the user

queries.

Formally, we define the partitioning function p : S → N where S is the set of

traffic sources (i.e., a wireless client or access point being monitored) and N is the

set of aggregator nodes. Each sniffer capturing packets from a source s ∈ S applies

the partitioning function p(s) to determine the aggregator a ∈ N that should receive

packets sent by s. Each aggregator merges the packets that it receives, before passing

them to a locally-running instance of each user query. This approach is inspired by the

MapReduce paradigm used for large-scale distributed processing in datacenters [64].

Traffic partitioning: Argos must take into account the cost of transferring each

packet from the capturing node to the aggregator node. In a wireless mesh environ-

ment, it is desirable to avoid sending captured packets over multiple network hops,

as this increases overall network load. Also, the choice of partitioning method will

Chapter 6: Argos Architecture 111

determine the set of packets that are observed by each aggregator node after merging.

This affects user queries, since each sniffer dataflow will only be able to observe its

locally-merged portion of the global packet stream. Ideally, the partitioning method

should not restrict the query logic.

Our approach to traffic partitioning is based on assigning all traffic captured for a

given basic service set (BSS) to a single aggregator node. The BSS represents a single

access point and all of its associated clients. The set of sniffer nodes that capture

traffic from a given BSS tend to be within close physical proximity to each other,

so this choice of partitioning function should minimize backhaul traffic. Also, many

queries naturally wish to observe properties of individual clients or access points,

so partitioning according to BSS allows queries running on each aggregator node to

observe the full merged packet stream from each source.

To implement this approach, each sniffer maintains a table mapping each BSSID

to its aggregator node. For each packet captured, the sniffer looks up the appropriate

aggregator and forwards the packet. In cases where an aggregator has not yet been

assigned, this table is constructed as follows. Each sniffer maintains a count of the

number of packets captured from each BSSID. These counts are periodically reported

to the central server. The central server assigns aggregation duties to the node with

the largest number of received packets for each BSSID. This approach ensures that

the fewest number of packets will need to be sent from other sniffer nodes to the

aggregator, since the aggregator has already captured the largest number of packets

for this BSS.

Although most 802.11 frames specify a BSSID, this is not the case for control

Chapter 6: Argos Architecture 112

frames (e.g., ACK and RTS frames), which specify only their destination. To properly

associate these packets with their BSSID, sniffers maintain a cache of MAC address

to BSSID mappings, which is updated whenever a non-control frame is captured.

The BSSID can then be determined for a control frame by consulting the cache. In

addition, we need a special case for frames sent to the broadcast address. Instead of

attempting to aggregate and merge these frames, we simply pass all broadcast frames

through for local processing by the capturing sniffer.

Stream merging: On each aggregator node, stream merging is performed in a

manner similar to Jigsaw [60]. Received packets’ timestamps are adjusted to account

for clock skew differences between sniffers. As suggested by Yeo et al. [145], we

use beacon frames to update the current timeskew estimates between sniffers; unlike

other wireless frames, beacons provide unambiguous synchronization points by virtue

of their 64-bit timestamp field, which ensures that every beacon is unique. Next, the

packet stream is merged by buffering packets for a window of time and searching for

duplicate packets (from different sniffers) with similar timestamps; these are assumed

to be copies of the same original packet transmission and are merged into a single

packet. When a packet is output by the merger, it is annotated with a list of all

of the sniffers that captured the original transmission, along with each sniffer’s local

capture time and received signal strength. This information is important for a variety

of spatially-aware queries as we will discuss below.

In conventional approaches to in-network aggregation, nodes route sensor values

up a collection tree to the root, merging values at each hop along the way. In com-

parison, Argos merges packets only once (at an aggregator node). This leads to two

Chapter 6: Argos Architecture 113

efficiency improvements: first, routing a packet to its aggregator node is generally

cheaper than routing it all the way to the root; second, execution of user queries

can occur in-network on aggregator nodes instead of only at the root. Conventional

approaches generally cannot push queries into the network because merging of values

can happen at every node and thus the final value is not obtained until the root is

reached. In Argos, however, a packet is “final” after its one and only merge (on its

aggregator node) and thus we can immediately apply user queries.

Channel identification: After performing traffic merging, it is necessary to

determine the original 802.11 transmission channel of each packet. When packets

are first captured, Argos annotates them with the current channel of the capturing

interface. However, this is not necessarily the correct channel, since 802.11 channels

overlap and packets transmitted on one channel can be received on nearby channels.

For example, in one 10-minute packet trace from an outdoor sniffer tuned to channel 2,

over 75% of the received packets were actually transmitted on channel 1 (a much

busier channel, leading to frequent packet bleed-over).

To handle this situation, each sniffer node maintains a cache of which channel each

AP is operating on, which is announced in the AP’s beacon frames. This information

is used to determine the transmission channel for most captured packets. In cases

where packets are captured from a BSSID for which no beacons have yet been received,

we fall back to using the capturing interface’s channel as a guess.

Chapter 6: Argos Architecture 114

6.3.4 Protocol Stack Emulation

Merged traces are subject to protocol stack emulation, allowing for higher-level

analysis of the network traffic by user queries: IP fragments are reassembled and TCP

flows are reconstructed. Due to sniffers’ limited capture abilities, many TCP flows are

expected to be only partially reconstructed, leaving “holes” in the stream where one

or more TCP packets were missed. Rather than rejecting these flows, we annotate

each with a listing of which sequence-number ranges were and were not captured. We

use timeouts to determine when to “close” and output each TCP flow, as there is no

guarantee of capturing the FIN packet to mark its completion.

We expect that many classes of queries will be able to make good use of partially-

reconstructed TCP flows. For example, any query examining application-level headers

(e.g., HTTP requests or peer-to-peer traffic) may need to capture only the first 1-2

packets in a TCP stream. Rule-based intrusion detection systems, such as Snort [124],

can detect many attacks with only a small number of captured bytes if they happen

to line up with the appropriate attack signature.

Finally, we note that, in theory, queries could receive packets from the merged

tap and then perform IP and/or TCP processing themselves, and this would actually

simplify Argos itself, because it would reduce the number of network taps that it must

support. However, IP fragmentation and TCP reconstruction can be quite memory

intensive (due to large amounts of fragment buffering) and thus, when running mul-

tiple user queries, it is much more efficient to perform this processing once and share

the results with all queries that are interested rather forcing each query to repeat the

work.

Chapter 6: Argos Architecture 115

6.3.5 Sniffer Channel Management

A unique challenge in Argos is that of simultaneously monitoring multiple radio

channels. There are 14 total 802.11b/g channels (of which 11 are permitted for use

in the US). One approach is to equip each sniffer node with multiple radios. Previous

indoor WiFi monitoring systems, such as Jigsaw [60], used 3 radios on each sniffer

node tuned to the most common 802.11 channels (1, 6, and 11); however, in a large,

urban-scale setting we expect to see a substantial amount of traffic on nonstandard

channels. For example, we estimate (by observing captured beacons) that 20% of the

APs located in the vicinity of our current sniffer deployment utilize channels other

than 1, 6 and 11. Clearly, if we want to include all nearby wireless networks in our

monitoring, it would be prohibitive to equip sniffers with as many radios as there are

available channels.

Our approach is to perform intelligent channel hopping on the sniffers to maximize

packet capture coverage for user queries. The simplest approach would entail a simple

static schedule with fixed dwell times, although this is unlikely to achieve the best

results given the variations in channel occupancy. A better approach is to dynamically

weight dwell times based on channel occupancy [65]. Since query requirements may

vary, Argos does not stipulate any single channel hopping policy, but instead provides

mechanisms for queries to specify their own policy.

Given that traffic of interest to a user query may be picked up by multiple sniffers,

it is also desirable to coordinate channel hopping across nearby sniffers in order to

maximize capture rates. Argos provides a channel focusing mechanism, whereby

a sniffer can request that other nearby sniffers switch to a given channel so as to

Chapter 6: Argos Architecture 116

improve the overall chances of picking up interesting traffic. For example, a query

running on a given sniffer may detect traffic of interest (say, TCP packets destined

for a certain IP address) and instruct other nearby sniffers to switch to the same

channel to improve capture fidelity for the remainder of the traffic stream. When

channel focusing is activated by a query running on some sniffer, the sniffer sends its

current radio channel to all “nearby” sniffers. Currently we define sniffer “nearness”

as geographic distance, although other options exist, such as the degree of overlap in

captured traffic. Each of these neighboring sniffers will immediately change to the

advertised channel. For a fixed period of time, the original sniffer and all recruited

sniffers will ignore all channel-change requests, including those from local queries’

channel policies as well as any other channel focusing messages.

With multiple concurrent user queries, each query may wish to listen on a different

channel at the same time. In Argos, we address this through the use of channel leases

and prioritization. A query can request that the sniffer radio be changed to a given

channel c for duration d with priority p. The channel manager will grant the lease to

the query with the highest priority. If the priority of the request is greater than the

priority of the current lease, the current lease will be preempted. When the current

lease expires, pending lease requests are processed in decreasing priority order. Often,

each query is assigned a static priority at configuration time (e.g., according to user

ID), although many policies are possible.

As an example, the default weighted channel policy will iterate through the avail-

able channels according to an estimate of the amount of traffic being captured on

each channel. A query can temporarily override this default policy by requesting a

Chapter 6: Argos Architecture 117

Figure 6.2: The sniffer and server dataflows of a “stolen laptop finder”

example query. Packets are passed to or from the query at bracketed elements (e.g.

[Raw Tap]).

coordinated channel focusing across a set of sniffers, by making a lease request as

described above. Once the lease expires, the sniffer will return to the default policy.

6.4 Example Query: Stolen Laptop Finder

An example Argos query is illustrated in Figure 6.2, which implements a simple

stolen laptop finder. The query maintains a list of target MAC addresses represent-

ing stolen laptops that should be tracked (e.g., after being reported stolen by the

owner). On each sniffer, locally captured packets are passed (via the raw tap) to a

WeightedChannelRotate element that periodically adjusts the channel-hopping sched-

ule according to the number of packets observed on each channel. Packets are also

Chapter 6: Argos Architecture 118

passed to a MACFilter element that drops all packets whose source MAC address is

not in the list of targets. Matching packets are passed on to trigger the GeoChan-

nelFocus element, which recruits nearby sniffers to switch to the same channel. This

will increase the network’s overall ability to recover packets from the stolen laptop

(which may aid in identifying its location or current user). The WeightedChannel-

Rotate element uses a low priority when obtaining leases for channel-hopping. This

ensures that the GeoChannelFocus element, using a higher priority, can to suppress

channel-hopping when a laptop is detected.

After in-network merging, the merged packet stream is passed to each query via

the merged tap, where a second filtering for target MAC addresses is performed.

Any matching packets are passed to an EstimateLocation element that uses each

merged packet’s annotation of which sniffers captured that packet and the associated

received signal strength to estimate the transmitting laptop’s location. Finally, lists

of detected laptops and estimated locations are pushed to the central server, which

alerts the end user.

6.5 Implementation and Deployment

We have implemented and deployed a complete prototype of the Argos system

using the CitySense network (§5.2) as the hardware platform. It is important to note

that the nodes in our deployment were not located to maximize packet capture. In-

stead, the siting of sniffers was dominated by physical and logistical factors; where we

are allowed access, there are suitable mounting areas, and electric power is available).

Hence, the geographic distribution of the sniffers is nonuniform and not intended to

Chapter 6: Argos Architecture 119

be ideal for ambient wireless monitoring.

As noted previously, Argos is implemented using Click [86]. In addition to reusing

a number of existing Click elements, we implemented a total of 46 new elements, which

perform operations such as packet partitioning (by BSSID), packet-stream merging,

and channel hopping control. We also make use of the QuickLZ [19] compression

library for compressing network traffic.

6.6 Summary

Argos is an distributed wireless network monitor, designed for urban-scale sensing.

Argos captures ambient wireless traffic and runs custom user queries to process or

analyze the network packets. To scale to a large number of sniffers connected solely

through a bandwidth-constrained wireless mesh network, Argos performs in-network

aggregation of packets, which enables user queries to be run directly on the sniffer

nodes. As compared to a centralized query model, this enables a high degree of

data reduction and a corresponding reduction in mesh network traffic. To provide

monitoring coverage of all 802.11 channels, Argos provides customizable modules that

queries can incorporate to build arbitrarily complex channel policies. Finally, Argos

provides channel focusing as a technique to increase the network’s aggregate capture

fidelity when needs arise (e.g. when particularly important traffic is detected).

Chapter 7

Argos System Evaluation

7.1 Performance Evaluation

In this section, we evaluate the performance of Argos’ approaches to in-network

traffic processing and coordinated channel focusing. For traffic processing, the pri-

mary metric we are concerned with is the amount of backhaul bandwidth required

to send packet traces between sniffer nodes. We demonstrate that Argos’ dynamic

aggregator assignment substantially reduces the bandwidth requirements compared

to sending all traffic to the central server for merging.

For coordinated channel focusing, the goal is to improve the sniffer network’s

ability to detect packet streams of interest by focusing multiple sniffer nodes on the

same channel once a sniffer detects the target. We show that Argos’ triggered chan-

nel focusing improves capture of event traffic compared to simpler channel hopping

approaches.

120

Chapter 7: Argos System Evaluation 121

Class Frequency Offered Traffic Load
APs 18% 5514 Bytes/sec
Active Clients 14.5% 287 Bytes/sec
Idle Clients 65% 49 Bytes/sec
Ad-hoc Stations 2.5% 931 Bytes/sec

Table 7.1: Model for distribution and traffic load of transmitters, based on

live deployment data.

7.1.1 In-network traffic processing

First, we consider the impact of Argos’ approach to in-network traffic processing

on backhaul bandwidth usage. The benefits depend on several factors, including the

volume of traffic being captured, the backhaul network topology, and the backhaul

capacity. Given that our deployment of Argos represents a single point in a large

parameter space, to study these effects we make use of a simplified analytical model

that allows us to vary each parameter separately.

The model is based on a square grid of 25 sniffers, with each sniffer having di-

rect mesh backhaul links to the four adjacent sniffers. The central server is placed

in the center of the grid. There are 4000 traffic sources uniformly randomly dis-

tributed throughout the space; each source is randomly chosen from the four classes

in Table 7.1, based on observations from the real Argos deployment described in Sec-

tion 7.2. Each source i generates CBR traffic according to the rate shown in the table,

denoted ri. A sniffer s captures a fraction of the traffic from each source i according

to the function Fs(i) = dist(i, s)−α, where dist is the distance from the source to

the sniffer. We chose a pathloss exponent of α = 3 which is a good estimate for urban

Chapter 7: Argos System Evaluation 122

settings [122]. Hence, the total volume of traffic captured by s is
∑
i Fs(i) · ri.

Though intended to be general, this setup is based on parameters from our live

deployment (§7.2), including the number of sniffers (25), the average number of traffic

sources typically detected during the day (4000), and the offered traffic that we infer

per transmitter (table 7.1). The constant factors of the packet capture function were

scaled such that the average capture rate was 8%, to match capture performance

inferred from our deployment. Some aspects of this model are undoubtedly unique

to our deployment, although prior campus-based studies have reported comparable

values for client and AP traffic rates [87], as well as for the ratio of the number of

active clients to active APs [87, 137].

Given the capture rates for each sniffer, we can calculate the backhaul network

load that arises with (a) a centralized policy in which each sniffer transfers all of its

captured traffic directly to the sink, (b) a randomized assignment of traffic streams

to aggregator nodes; or (c) Argos’ in-network processing. In each case, we calculate

the load imposed on each link of the backhaul network. Traffic is compressed by each

sniffer prior to transmission, using an experimentally-determined compression ratio

of 65%. For the centralized policy, we calculate a shortest path from each sniffer to

the sink. The total load on each backhaul link is just the sum of the load induced

by each sniffer whose traffic traverses that link. For the two in-network processing

cases ((b) and (c)), aggregator nodes reduce the traffic stream by a percentage and

transmit the remainder to the central sink node.

The amount by which in-network processing reduces a traffic stream depends on

two independent factors. First is packet merging, which reduces traffic at a rate

Chapter 7: Argos System Evaluation 123

0.0 0.1 0.2 0.3 0.4 0.5
Link Traffic (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

in-network

centralized

random

Figure 7.1: Distribution of traffic load on backhaul network links with cen-

tralized and in-network traffic processing, using 25 sniffers and 4000 trans-

mitters, resulting in a total offered load of 34 Mbps.

proportional to the frequency of duplicates in the captured stream. This depends on

the sniffer network’s density and the channel selection pattern (since nearby sniffers

can only capture duplicate packets if they are tuned to the same channel). In our

network we see an average merge rate of only 7%.

Secondly, in-network processing also reduces traffic streams by executing the user

queries. The queries’ summed output data rate depends on the number and types

of the queries, but in our case the 10 queries that performed all of the logging and

data collection for sections 7.2 and 7.3 resulted in a 90% data reduction (this includes

the 7% reduction just from packet merging). In other words, the combined output of

this set of queries was one-tenth the data capture rate. From this, we assume in our

Chapter 7: Argos System Evaluation 124

model that in-network processing results in a 90% data reduction on each aggregator

node.

Figure 7.1 shows the distribution of load on backhaul links for each policy. In this

case, the total offered load from the traffic sources is 34 Mbps. As the figure shows,

the centralized approach induces a wide variation of traffic loads on each backhaul

link, since the links closest to the sink must carry much more traffic than nodes

near the leaves. In-network processing spreads the load more evenly across the mesh,

with a max link usage of 0.06 Mbps, 8 times less than with the centralized policy.

The randomized scheme only partially realizes the benefits of in-network processing,

resulting in a max link usage of 0.19 Mbps, and incurs the highest mean and median

link usages (0.1 Mbps each). Figure 7.2 shows how the max link usage varies as the

total offered load from traffic sources increases.

7.1.2 Coordinated channel focusing

Next we evaluate our technique of channel focusing in order to allow multiple

sniffers to capture traffic from a given source. The objective is to capture as many

packets as possible from an “event of interest,” such as an anomalous traffic pattern

or transmissions from a specific wireless client. Since an interesting event can occur

on any 802.11 channel at any time, an uncoordinated approach to channel hopping is

unlikely to capture many packets from an event. In the channel focusing strategy, if

any one of the sniffers detects a packet representing an interesting event, it recruits the

3 (geographically) nearest sniffers to switch to the same channel and begin capturing

packets. Our metric is the number of packets captured for each event.

Chapter 7: Argos System Evaluation 125

0 50 100 150 200 250 300
Total Offered Load (Mbps)

0

1

2

3

4

5
M

a
x
.

Li
n
k

Lo
a
d
 (

M
b
p
s) centralized

random

in-network

Figure 7.2: Scalability of in-network processing with increasing load. The

number of sniffers was fixed at 25 while the number of transmitters was scaled up.

For context, 2.5 Mbps is a (generous) estimate for current wireless mesh capacity

limits; we expect that sniffer networks with any links loaded beyond this amount will

suffer from network congestion.

In order to have a fair comparison, an ideal experiment should use the same

source traffic for each channel hopping policy. However, given that each sniffer can

only listen to a single channel at a time, we have to emulate this setting with a packet

trace captured offline. We captured a set of 5-minute packet traces from 9 nearby

sniffers in our Argos deployment. There are 11 traces in total, one for each 802.11

channel. For the experiments, sniffer nodes read from the traces instead of capturing

packets from the radio. We emulate a situation where a sniffer can “change channels”

by reading data from the appropriate trace; that is, the traces virtually overlap in

Chapter 7: Argos System Evaluation 126

time, although they were initially captured at different times.

We randomly chose 5 “interesting events” within the captured traces. Each event

is defined as a packet chosen at random followed by all packets transmitted from

the same station over the next 10 seconds. Each event is comprised of at least

100 packets. The performance metric is the fraction of “interesting event” packets

that are successfully captured, in aggregate, by the entire sniffer network.

We evaluate three different channel hopping schemes. Rotation Only uses weighted

channel hopping in which each sniffer independently rotates through channels with

dwell times proportional to the amount of traffic observed on each channel. Detect and

Hold causes a sniffer to remain on the same radio channel for 10 sec after detecting

a single packet from an interesting event, thereby increasing its chance of picking

up more packets from the event. Finally, Channel Focusing has the first node that

detects an event recruit nearby sniffers to switch to the same channel for 10 sec.

Figure 7.3 shows the fraction of packets captured for each of the 5 events (labeled

A–E) for each of the three policies. In each case, channel focusing greatly improves

the capture fidelity compared to the Rotation Only policy. Indeed, a single sniffer

holding on the same channel (Detect and Hold) results in a substantial improvement

to event capture, with improvements ranging from 41% to 77%. Channel focusing

with neighbor recruitment further improves capture rates up to 34% above the Detect

and Hold policy. This shows that there is clear benefit from coordination across sniffer

nodes.

Chapter 7: Argos System Evaluation 127

A B C D E
Experimental Run

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 C

a
p
tu

re
d

channel focusing

detect and hold

rotation only

Figure 7.3: Event traffic capture rates with and without channel focusing.

7.2 Urban Wireless Traffic Characterization

In this section, we leverage the Argos deployment to perform a detailed char-

acterization of wireless network usage across the city. Unlike previous wardriving

studies [32, 81], we have the benefit of continuously monitoring wireless traffic from

multiple vantage points, rather than taking a single snapshot view of wireless traffic

from a single mobile sensor. This yields a much richer picture of the urban wireless

landscape than previous studies have revealed.

Chapter 7: Argos System Evaluation 128

7.2.1 Overall network population

We conducted a number of different measurement studies on Argos that spanned

a total of 6 months. This section presents data from a 12 day period over which

detailed traffic measurements were recorded. In total, we detected 2630 access points

and 65,073 wireless clients, although our rate of capture varied widely across this

population. By way of comparison, these counts are each over 25 times larger than

those reported for a 24-hour trace taken by the largest indoor wireless sniffer deploy-

ment [60]. A usage study of Google’s 500+ node outdoor mesh network [28] recorded

30k clients over a 28 day trace, but this includes only the mesh traffic, as opposed to

all nearby wireless networks.

Overall, we captured a total of 1.1 TB of traffic across 2.4 billion packets. It

turns out that a single wireless client in the vicinity was responsible for 81% of all the

captured bytes and 30% of all captured packets; this “spammer” node appears to be

continuously transmitting max-sized 802.11 frames. Unfortunately these frames are

encrypted so there is not much we can say about them – this traffic is excluded from

the remaining analyses in this paper. The amount of non-spammer traffic captured

per sniffer varied greatly, from just 3 MB to nearly 23 GB, with an average and median

of 8.5 GB and 9.6 GB, respectively. This variance is not surprising, due to differences

in the sniffers’ locations as well as the densities and activity levels of nearby wireless

networks. Overall, 61% of the packets and 44% of the networks utilized some form of

encryption.

Chapter 7: Argos System Evaluation 129

Figure 7.4: Spatial coverage of the Argos sniffer network, in terms of the

fraction of packets captured from a mobile laptop in each location. Sniffers

are shown as blue markers.

7.2.2 Spatial coverage

The first major question is, how much spatial coverage is afforded by the Argos

sniffer network? That is, over what physical area can the sniffers observe ambient

wireless traffic? We conducted an experiment in which a user with a laptop roamed

around the Harvard University portion of our deployment area. This area includes a

number of multi-story buildings as well as several open areas, typical of a university

Chapter 7: Argos System Evaluation 130

campus. The laptop was equipped with a GPS receiver and continuously broadcasted

UDP datagrams containing the current GPS coordinates. The sniffers observed this

traffic and, for each position of the laptop, we determined the fraction of packets

captured by Argos.

Figure 7.4 shows the results; the (extremely noisy) packet reception rates from

all 7 sniffers are combined and the data is smoothed to yield a clearer picture of

the spatial coverage. The figure shows that although our capture ability is related

to distance (as expected), it’s a very rough correlation. On the one hand we were

able to capture packets from a laptop up to 430 m from the nearest sniffer, which

is surprising given the presence of several tall buildings obstructing the line-of-sight

path between the laptop and sniffers. On the other hand, there are also areas quite

close to multiple sniffers that had low packet capture rates.

7.2.3 Traffic capture coverage

The second question is, how much of the total ambient traffic was Argos able to

detect? This is a difficult question to answer, as we do not have ground truth as to

how much ambient traffic there actually is. As an estimate, we compute packet recep-

tion coverage for each sniffer by counting 802.11 beacons received from access points.

Access points broadcast beacons at a fixed interval (typically 10 Hz), so it is straight-

forward to calculate the percent of beacons captured from only the total number of

beacons captured and the elapsed time. As noted by others [84], beacon capture rates

can be used as a rough proxy for overall packet capture rates, although their capture

rates tend to be somewhat higher than other traffic as they are transmitted at low

Chapter 7: Argos System Evaluation 131

0 5 10 15 20 25
Sniffer Index (sorted)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
B

e
a
co

n
 C

a
p
tu

re
 F

id
e
lit

y

Figure 7.5: Capture fidelity as fraction of beacons captured by each sniffer.

PHY rates.

As shown in Figure 7.5, sniffer coverages range from 18% to just under 1%; the

overall coverage of the entire network was 8%. These values are much lower than

what is typically seen with indoor monitoring networks, where coverage can exceed

95% [60]. We discuss the implications of this (and possible ways to improvement

traffic capture) later in this section. Also note that this figure omits APs for which

we captured only a small number of beacons (< 10) as fidelity estimates in these cases

are likely to be inaccurate; 21% of detected APs fell into this category.

The next question we can ask relates to the variation in traffic over time. Fig-

ure 7.6 shows the types of TCP traffic (classified by port number) captured over a

representative weekday. Unsurprisingly, HTTP and HTTPS are the dominant traffic

classes, with Email (POP3, IMAP), FTP and NetBIOS (not shown) making up most

Chapter 7: Argos System Evaluation 132

0 6 12 18 0 6 12 18 0 6 12 18
Hour of Day

0

20

40

60

80

100

120

140

160
H

o
u
rl

y
 T

ra
ff

ic
 (

M
B

)
HTTP
HTTPS
Other
E-mail
FTP

Figure 7.6: TCP traffic, by class, over 3 consecutive weekdays.

of the identifiable remainder. Although the expected diurnal patterns are clearly

present, the captured traffic was quite bursty with hourly per-class traffic spikes up

to 147 MB. Each of the two prominent HTTPS traffic spikes represents traffic from

a single AP. However, in both cases multiple clients were associated with the AP so

we could not unambiguously determine which specific client was the source.

Similarly, the two HTTP traffic spikes at 1:00am on days 1 and 3 were each

traced to a single AP. Since the traffic events occurred in the middle of the night,

only 2-3 clients were observed associated with the AP. One client in particular is the

likely source for both of the traffic spikes; this client was associated throughout both

events, during which we observed the client make hundreds of web requests. Many of

these requests were to video-hosting sites (e.g. youtube.com, netflix.com) further

explaining the sudden traffic usage.

Chapter 7: Argos System Evaluation 133

7.2.4 Discussion

From these measurements, it is clear that Argos’ ability to monitor large pop-

ulations over significant geographic areas comes at the cost of missing a significant

percentage of the ambient traffic. Although this somewhat constrains the applications

suitable for Argos, our current performance turns out be adequate to perform many

interesting analyses (§7.3). Nonetheless, its useful to briefly consider two sources of

packet loss that we have identified, with an eye towards future system improvements.

Firstly, one must consider the urban environment, with its frequent line-of-sight

path obstructions by nearby buildings, plus the extremely dense penetration of extant

WiFi networks. Although these difficulties are largely innate to urban settings, we

expect that one could reduce their impact as our sniffers were not optimally located

for packet capture and simply use 8 dBi omnidirectional antennas, rather than dish

or patch antennas that would have aided packet capture.

We also note that Argos’ long-range packet capture may be biased towards packets

sent at low PHY rates, as these packets can be received at lower signal strengths than

those sent at higher PHY rates. Since we have no way to know the true distribution

of PHY rates used in our measurement area, we instead utilize packet traces captured

in other settings as an imperfect comparison. We examined the distribution of PHY

rates present in packet traces from a conference in 2006 [55] and an academic building

in 2007 [58]. In both cases, the sniffers were densely deployed and thus captured nearly

100% of the traffic, yielding a complete picture of the PHY rates in use. The indoor

traces show 20% and 6% (respectively) of packets were sent at 36 Mbps or above,

whereas this is true for only 0.5% of the packets captured by Argos. We tentatively

Chapter 7: Argos System Evaluation 134

conclude from this that Argos is indeed biased against high data rate packets. At

PHY rates of 24 Mbps and below, there was no clear trend.

Secondly, many packet transmissions are missed simply because all nearby sniffers

are tuned to other channels at the time. The above measure of fidelity estimates

Argos’ capture rate across all traffic, but this is not optimal for many queries. If a

query is interested in a subset of the traffic, the rate of capture of just that traffic can

be increased if the query can predict on which channels the traffic is most likely to

occur. For example, our queries use the default channel policy, which weights channels

by the total traffic volume on each, whereas a query interested only in TCP traffic

might instead weight channels by just the 802.11 data traffic. This would deprioritize

channels with lots of 802.11 management traffic (e.g. beacons) but little higher layer

traffic.

We tested a simplistic scenario with a query interested solely in traffic from channel

1, which lead to a network-wide fidelity of 25%. This is a significant improvement over

the 8% reported earlier, although this is somewhat of a best-case scenario because the

channel prediction was trivial (all nodes statically assigned to channel 1) – we predict

that most queries can realistically expect a fidelity somewhere between 8% and 25%,

depending on the pattern of traffic they are interested in and how accurately one

can predict when and on which channels the traffic will occur. Developing channel

policies to that can forecast different classes of traffic is a challenging area of future

work.

Chapter 7: Argos System Evaluation 135

Rank Requests Clients Site
1 1856 301 www.facebook.com
2 736 239 www.google.com
3 267 5 www.huffingtonpost.com
4 249 5 www.craigslist.org
5 239 1 www.repubblica.it
6 232 143 www.apple.com
7 162 22 images.apple.com
8 139 17 my.lesley.edu
9 133 46 www.youtube.com
10 131 7 www.seas.harvard.edu

Table 7.2: Top ten websites visited by users, ranked by number of captured

requests.

7.3 Case Studies

In this section, we showcase Argos’ capabilities for enabling complex user queries

against the rich data stream of ambient wireless traffic. We present four case studies

to highlight potential use cases for Argos: tracking of popular Web sites and Google

searches from different parts of the city; detection of malicious traffic and malware

over the airwaves; tracking of public transport services; and fingerprinting individual

clients based on their wireless network behavior. These case studies are intended to

demonstrate Argos’ capabilities to distill complex wireless network traffic to yield a

high-level view.

Chapter 7: Argos System Evaluation 136

7.3.1 Popular Websites and search patterns

The first case study deals with exploring the popularity of Web sites visited by

wireless users around the city. Determining which website a user is visiting is non-

trivial: simply looking at packets destined for port 80 reveals IP addresses, but many

of these are for auxiliary servers (such as ad sites and CDN servers) that are not

being directly visited by the user. We implemented a query that captures the HTTP

request headers from users and looks for a Host: field in the request, which most

browsers add to indicate which host is being visited. We also look for HTTP responses

where a Set-Cookie header is used. Using this technique, we captured a total of

523,818 HTTP requests, for which we could determine the site name for 62,292 of

them. 6143 unique websites were visited, and Table 7.2 shows the top 10 after we

exclude ad sites and CDN servers.

We captured Web search queries by looking for HTTP requests to URLs containing

appropriate strings (e.g., Google searches include &q= followed by the query phrase).

We captured 1,725 web searches, 686 of which were to Google. The most popular

search terms are not particularly surprising, dominated by words such as in, of, and

boston.

7.3.2 Malicious traffic

Most studies of malware on the Internet [103, 93] are based on traces captured

from wired networks or border routers. One notable exception is Stone-Gross et al.’s

study of user traffic at a conference [132]; the authors demonstrate that identifying

malware through wireless sniffing is possible, although they also utilized packet traces

Chapter 7: Argos System Evaluation 137

Count Snort Rule
1229 SQL ping attempt
794 x86 shell code exploit
204 SQL probe response overflow attempt
121 Web server buffer overrun attempt
87 FTP traffic encrypted

Table 7.3: Top five Snort alerts.

taken from the wired network. Additionally, they estimated a capture fidelity of more

than 90% owing to their compact, indoor setting.

We are interested in whether Argos can detect malicious behavior over the air-

waves. We set up an Argos query to feed merged traces to the Snort [124] network

intrusion detection system, configured with a standard set of 5303 detection rules.

We added two additional rules [6] to detect traffic from the Conficker botnet. Over

11 days, Snort raised 2979 alerts across 37 rules; 141 unique client devices were im-

plicated by the alerts. Table 7.3 shows the top 5 triggered alerts. The Conficker

shellcode botnet rules triggered 5 times on one client, which was subsequently ob-

served engaging in what appeared to be typical scanning behavior, attempting to

connect to TCP ports 80 and 445 across a large number of geographically-dispersed

IP addresses.

Note that Snort, designed primarily for wired networks, assumes that it can ob-

serve complete packet traces – given the limited fidelity of wireless packet capture in

Argos, it is promising that a wide range of malicious activity could still be detected.

These results demonstrate that there is substantial promise for the use of passive

monitoring for detecting and tracking malicious behavior in urban scale settings.

Chapter 7: Argos System Evaluation 138

7.3.3 Tracking public transport services

Another interesting use for Argos involves detecting and tracking public transport

vehicles and their passengers. Soon after deploying Argos, we noticed the occasional

appearance of SSIDs such as Coach0228_Box-078 and MBTA_WiFi_Coach1601_Box-139.

A bit of research, and the observation that these SSIDs were only ever captured by

the sniffers in the western Cambridge cluster near a commuter rail line, lead us to

the realization that these were access points installed on public commuter trains.

To test the sniffers’ ability to track moving vehicles, we wrote a query to detect

the passage of trains and infer their direction of travel. Sniffers perform weighted

channel hopping to search for packets from any known train BSSIDs; when a train

packet is detected, channel focusing is initiated to maximize the network’s capture

potential while the train passes. To infer the direction of travel, we rank-order the

3 sniffers located alongside the railway tracks according to the mean timestamp of

the packets captured at each.

Table 7.4 shows one typical day’s worth of data. Argos captured 2801 packets from

42 unique access points, corresponding to 2–4 APs per train. Trains were detected

passing by on 34 occasions, with directionality inferred in 29 of the cases (4 of which

were incorrect). In total, we have observed 456 unique users associated with the train

networks and have captured 804 Web requests from passing trains.

We have also detected WiFi networks related to buses in the area, with names such

as boston_bus_600-798, Dartmouth Coach 0801, and Concord Coach 921 Left Side.

47 bus-mounted networks have been discovered by the Argos node that is mounted

near Interstate 93, a major highway leading into and out of Boston. We have detected

Chapter 7: Argos System Evaluation 139

Observed Scheduled Observed Scheduled

Time Direction Time Direction Time Direction Time Direction

7:10 In 7:03 In 16:13 Out 16:12 Out
7:34 Out* 7:30 In 16:24 In 16:19 In
7:46 Out 7:39 Out 16:52 (none) 16:52 Out
7:48 In 7:47 In 16:58 In 16:56 In
8:18 (none) 8:11 In 17:05 In* 17:02 Out
8:33 Out 8:30 Out 17:35 Out 17:32 Out
8:57 In 8:40 In 17:53 (none) 17:51 In
9:08 Out 9:07 Out 17:56 In* 17:52 Out
9:22 In 9:18 In 18:33 Out 18:32 Out

9:55 Out 9:52 Out 19:48 Out 19:48 Out
10:11 (none) 10:04 In 19:51 In 19:48 In
11:32 Out 11:32 Out 20:36 In 20:36 In
11:43 In 11:41 In 20:58 Out 20:57 Out
12:41 In 12:36 In 21:37 In 21:36 In
13:36 Out 13:32 Out 22:55 (none) 22:52 Out
14:20 Out* 14:19 In 23:37 In 23:34 In
15:14 Out 15:12 Out 00:25 Out 00:22 Out

Table 7.4: Train schedule (time and inbound/outbound direction) inferred

from captured traffic (“observed”), compared to the true schedule as pub-

lished on the MBTA website (“scheduled”) for Dec 9, 2009.

Chapter 7: Argos System Evaluation 140

144 unique users and 176 web requests on these networks.

7.3.4 Wireless client fingerprinting

Our final case study asks the question: how much information can we infer about

individual users based on their wireless network traffic? Clearly, a great deal can

be learned by watching an individual user’s Web surfing or email activity, a concern

which is readily addressed through encryption.

However, even if a user associates with an encrypted network, it is possible to

glean a great deal of information based on data that the 802.11 protocol transmits in

the clear. An example is the contents of 802.11 probe request packets. To discover

networks in its vicinity, an 802.11 client broadcasts probe requests containing the

plain-text SSIDs of networks it wishes to discover; if any of these networks receive the

request they send a corresponding probe response. Many operating systems remember

the full set of networks that a user has previously associated with, and transmit this

set of SSIDs in probe request messages. As a result, by capturing 802.11 probe

requests, we can learn the locations that a user has previously visited.

To explore this, we wrote a query to capture 802.11 probe requests and the SSIDs

contained within them. We detected 21,546 unique clients with a mean of 470 probe

requests sent per client. Looking at the number of unique SSIDs observed per client,

the distribution is heavy-tailed, with only a single SSID observed for the majority of

clients. Nonetheless, a number of clients probed for enough unique SSIDs, to reveal

significant information about their past behavior.

We manually inspected the top five clients by number of unique SSIDs; they are

Chapter 7: Argos System Evaluation 141

Rank Total probe reqs Unique SSIDs Locatable SSIDs
1 7431 49 28
Locations: MBTA trains, Portland OR, Acton MA, Austin TX
2 87 48 11
Locations: Harvard, BU, MIT
3 370 46 10
Locations: Manchester UK, Belgium, Tulsa OK, Chicago IL, ...
4 632 47 10
Locations: Little Rock AR, Sacramento CA, Atlanta GA, ...
5 120 47 0
Locations: (none identified)

Table 7.5: Locations previously visited by users, inferred from probe re-

quests.

summarized in Table 7.5. For each SSID, we used the wigle.net wardriving database

to attempt to locate each network, and found for 4 of the 5 clients that many of the

SSIDs had a unique geographic location. The table lists some of the locations that

each user is inferred to have traveled based on their probe requests.

Clearly, this is a case where the 802.11 protocol is revealing potentially sensitive

information about a user’s whereabouts, well beyond the sensing range of the Argos

network itself. Most WiFi users are probably unaware of this feature of 802.11. It

is worth underscoring that this information is revealed even if the user only ever

associates with encrypted networks. The use of probe requests to track users has

been previously proposed, although in a different context [110]; instead of considering

clients’ past behavior, as we do, the researchers instead used the set of SSIDs that

each user probes for as a way to uniquely identify that user even if they spoof their

MAC address.

Chapter 7: Argos System Evaluation 142

The tracking techniques described here can become more powerful when used

in conjunction. For example, user #1 above seems to be a frequent MBTA train

user. We could conceivably perform (i) fine-grained spatial and temporal tracking

over short distances (by mapping networks they are observed to associate with), (ii)

inference of spatial and temporal behavior over moderate distances (by combining

their past behavior with MBTA train schedules), and (iii) coarse-grained spatial (but

not temporal) tracking over long distances (via mapping of probe requests’ SSIDs).

There are severe implications for user privacy if this technique were employed on a

wide scale.

7.4 Summary

Our evaluation of in-network processing shows that this technique is highly ef-

fective at reducing the peak mesh traffic (as measured by the most heavily loaded

link). We find that the actual merging of packets results in relatively modest savings

(7%); instead, the great majority of gains are obtained by data reduction performed

by the queries themselves (which are dependant on in-network processing to be able

to run within the sniffer network). Although this means that the practical benefits

depend on the specific queries being run, our (unoptimised) queries achieved 90%

data reduction. For coordinated channel focusing, our evaluation shows that capture

of targeted traffic can increase by up to 34% above a detect-and-hold policy.

To evaluate our deployment, we present data obtained from a detailed, 12-day

period of traffic measurements. During this time we ran four simple case study

queries to test the utility of the system and showcase some preliminary insights that

Chapter 7: Argos System Evaluation 143

Argos enables: popular websites and search patterns, detection of malicious traffic,

tracking commuter trains, and probe-request-based user fingerprinting and tracking.

Chapter 8

Discussion and Future Work

In this chapter we offer thoughts on future trends within the space of real-time

query systems, discussing how Cobra and Argos fit into the bigger picture. This leads

naturally to a brief overview of potential directions for future work.

8.1 Generalizing Cobra and Argos

In Chapter 1 we argued that current general purpose SPEs fall short of meeting

the needs of applications in certain application domains, leading to a proliferation of

specialized systems in those areas. With Cobra and Argos, we have presented two new

query systems designed to operate in two such domains; filtering and aggregation of

RSS feeds, and wireless network monitoring, respectively. However, this dissertation’s

primary goal is to identify general principles for real-time querying, of which Cobra

and Argos are simply two possible instantiations. Thus it is important to consider

generalizations of Cobra and Argos.

144

Chapter 8: Discussion and Future Work 145

It is somewhat tempting to suggest that, ideally, the functionality of existing

SPEs (both general purpose and domain-specific) should eventually be merged so

that a single system can handle the needs of a huge variety of application domains.

However, we find this somewhat unrealistic, as the diversity of functionality would

simply overwhelm one system. This is not to say that its not technically possible,

only that managing the development of such a system would be unwieldy. For any

one use (say, financial monitoring), a great majority of the system’s functionality

would be useless (dedicated to other domains). Such a scenario would likely lead to

a splintering of the development effort into smaller, more focused areas.

Instead, we believe it is more realistic to target query systems that each focus on

a single, large application area. This is a balanced approach; the domain should be

broad enough to enable significant reuse of the system, and yet small enough that

little of the system’s functionality would be irrelevant to any particular application.

Cobra, for example, could be folded into a generalized query system over streaming

text. The rise of “Web 2.0” and user-generated content on the Internet has yielded a

wealth of textual data, of which blogs and other RSS feeds are merely one class. One

can imagine a system that pairs a generalized text-processing engine with optimized

data collection modules for RSS content (already implemented in Cobra), Twitter

feeds, Facebook updates, or even SMS text messages. Many systems that currently

use only one of these data sources (e.g. [90, 125]) could seamlessly integrate these

other sources (social and legal issues of access to the data notwithstanding).

Argos is built using Click [86], and thus is already part of an ecosystem designed

around networking systems. Click is a toolkit (language, compiler, and runtime) orig-

Chapter 8: Discussion and Future Work 146

inally designed for building modular software routers, but has since adapted for many

diverse networking-related purposes. Click has been used to build a honeypot [139],

a wireless protocol simulation [91] and an Ethernet “watchdog” device [66], to name

but a few examples. The common thread between these systems (including Argos) is

that their basic operation is to operate on a stream of packets. Any new applications

that are centered around packet-based operations are typically able to reuse many

existing Click operators. In our work developing Argos we used many existing Click

operators while also introducing a variety of new operators, mostly related to the

analysis of wireless packets, which is an area that has received less attention from the

Click community.

This general idea is quite similar to one put forth by Stonebraker and Çentintemel

in 2005 [133]; namely, that the commercial database market “will fracture into a collec-

tion of independent database engines.” The authors primarily cite stream-processing,

with its many deep, architectural differences from traditional DBMSs, as driving this

fissure, but they also speculate on other possible database specializations: data ware-

housing, sensor networks, text search, scientific databases, and XML databases. The

“vision” of this work mirrors our own.

8.2 Future Work

Working to expand and integrate Cobra and Argos into more generalized plat-

forms, as above, is one potential direction for the future, although a number of more

targeted opportunities also exist.

For Cobra, it would be beneficial to provide users with tools for focusing their

Chapter 8: Discussion and Future Work 147

queries, in the event that they receive too many results. Our current matching al-

gorithm does not rank results by relevance, only by date. Likewise, the algorithm

is unconcerned with positional characteristics of matched keywords; as long as all

keywords match an article, it is delivered to the user. Much work has been done on

ordering web search results (e.g. PageRank [78]), although it is unclear how successful

these techniques would be at ranking RSS entries.

Another open question is how to rapidly discover new Web feeds and include

them into the crawling cycle. According to one report [130], over 176,000 blogs were

created every day in July 2006. Finding new blogs on popular sites such as Blogger

and LiveJournal may be easier than more generally across the Internet. While the

crawler could collect lists of RSS and Atom URLs seen on crawled pages, incorporating

these into the crawling process may require frequent rebalancing of crawler load.

Finally, exploiting the wide distribution of update rates across Web feeds offers new

opportunities for optimization. If the crawler services could learn which feeds are

likely to be updated frequently, the crawling rate could be tuned on a per-feed basis.

This is particularly important considering the high rate of blog abandonment [14].

Argos would benefit from a more rigorous notion of privacy in the user query

interface. We are exploring the use of differential privacy [100] which provides a very

strong guarantee: namely, query results are formally indistinguishable when run with

and without any one record. Effectively, this can make it impossible for an Argos

user to know definitively whether or not a specific person (wireless client) is being

monitored by Argos. This will require that Argos respond only to statistical queries,

rather than yielding specific details of individual packets or users, but we believe this

Chapter 8: Discussion and Future Work 148

could be sufficient for many users.

Secondly, Argos’ capture coverage could be improved by incorporating mobile

sniffer nodes into the system (e.g. mounted on cars or buses [47]), or allowing in-

dividual users with laptops or WiFi enabled mobile phones to run Argos sniffers on

their own devices; this raises the substantial challenge of managing the population of

participatory sensors and integrating their data with that captured from static Argos

nodes.

Chapter 9

Conclusions

In recent years, advances in networking technology have lead to remarkable in-

creases in both bandwidth and ubiquity. Thus, not only are existing systems now

producing more data than ever before, but now more kinds of systems are networked

and able to produce data. As a way of contending with this growing flood of data,

this dissertation considers the use of real-time query systems and, particularly, their

ability to operate on complex data sources.

We presented three design principles for building scalable, effective query systems

for complex data sources: query interfaces tailored to the application’s specific data

types, optimized data collection processes, and allowing queries to provide feedback

to the collection process. To demonstrate these principles, we presented the design

and evaluation of the Cobra and Argos systems.

Cobra is a system for real-time content-based search and aggregation on Web

feeds. Cobra is designed to be incrementally scalable, as well as to make careful use of

network resources through a combination of offline provisioning, intelligent crawling

149

Chapter 9: Conclusions 150

and content filtering, and network-aware clustering of services. Our prototype of

Cobra scales well with modest resource requirements and exhibits low latencies for

detecting and pushing updates to users.

Argos is an urban-scale sensor network that combines the use of in-network traffic

processing, intelligent channel management, and a rich user query interface to allow

users to access this complex source of ambient data. We have shown that Argos’

approach to in-network traffic processing substantially reduces backhaul network load

and that our dynamic channel hopping strategy improves capture coverage. Through

an extensive characterization of citywide WiFi traffic and several case studies, we have

demonstrated Argos’ ability to support detailed analysis of the network behavior.

In addition, we have described our architectural vision for the CitySense testbed,

along with an analysis of selected network performance metrics. CitySense serves as

a novel platform for urban-sensing and mesh networking (with real-world physical

effects) applications; the Argos project serves as an example of the new kinds of

research that CitySense enables.

The research presented here is meant to broaden the range of data sources for

which real-time query systems can be built, but there are certainly many more data

sources that will require specialize approaches not considered here. And we should

expect that in the near future, the need will likely arise for systems that can query

over entirely new kinds of data sources.

Bibliography

[1] Aircrack-ng. http://www.aircrack-ng.org/.

[2] Akamai. http://www.akamai.com/.

[3] Cascading. http://www.cascading.org.

[4] Champaign-urbana community wireless network. http://www.cuwin.net/.

[5] Complex event processing, event stream processing, streambase streaming plat-
form. http://www.streambase.com/.

[6] Detecting conficker — the honeynet project. http://www.honeynet.org/

node/388.

[7] Fade to black. http://www.bureauit.org/ftb/.

[8] Freifunk. http://www.freifunk.net/.

[9] Google blog search faq. http://www.google.com/help/blogsearch/about_

pinging.html.

[10] Ibm research esps pilots. http://domino.research.ibm.com/comm/research_
projects.nsf/pages/esps.pilots.html.

[11] Iperf. http://iperf.sourceforge.net/.

[12] Js-javaspaces service specification. http://river.apache.org/doc/specs/

html/js-spec.html.

[13] Limelight networks. http://www.limelightnetworks.com/.

[14] Livejournal. http://www.livejournal.com/stats.bml.

[15] London congestion pricing. www.vtpi.org/london.pdf.

[16] Lorcon. http://802.11ninja.net/lorcon.

151

Bibliography 152

[17] Net dictionary index – brown corpus frequent word lising. http://www.edict.
com.hk/lexiconindex/.

[18] Olsr. http://www.olsr.org/.

[19] Quicklz. http://www.quicklz.com/.

[20] Radiotap.org. http://www.radiotap.org/.

[21] Skyhook wireless. http://www.skyhookwireless.com.

[22] Tcpdump/libpcap public repository. http://www.tcpdump.org/.

[23] Vmware esx server. http://www.vmware.com/products/vi/esx/.

[24] Welcome to apache hadoop! http://hadoop.apache.org.

[25] Wigle.net. http://www.wigle.net/.

[26] Wireshark. http://www.wireshark.org/.

[27] Tibco publish-subscribe. http://www.tibco.com, 2005.

[28] Mikhail Afanasyev, Tsuwei Chen, Geoffrey M. Voelker, and Alex C. Sno-
eren. Analysis of a mixed-use urban wifi network: when metropolitan becomes
neapolitan. In IMC ’08: Proc. of the 8th ACM SIGCOMM conference on In-
ternet measurement, 2008.

[29] Mikhail Afanasyev, Tsuwei Chen, Geoffrey M. Voelker, and Alex C. Sno-
eren. Analysis of a mixed-use urban wifi network: when metropolitan becomes
neapolitan. In IMC ’08: Proc. of the 8th ACM SIGCOMM conference on In-
ternet measurement, 2008.

[30] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd, and Robert Morris.
Link-level measurements from an 802.11b mesh network. In SIGCOMM ’04:
Proc. of the 2004 conference on Applications, technologies, architectures, and
protocols for computer communications, 2004.

[31] Yanif Ahmad and Uğur Çetintemel. Network-aware query processing for stream-
based applications. In Proc. of VLDB’04, 2004.

[32] Aditya Akella, Glenn Judd, Srinivasan Seshan, and Peter Steenkiste. Self-
management in chaotic wireless deployments. In MobiCom ’05, 2005.

[33] Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen, Richard
King, Philippe Selo, Yoonho Park, and Chitra Venkatramani. Spc: a dis-
tributed, scalable platform for data mining. In DMSSP ’06: Proc. of the 4th
international workshop on Data mining standards, services and platforms, 2006.

Bibliography 153

[34] Joel Apisdorf, K. Claffy, Kevin Thompson, and Rick Wilder. Oc3mon: Flexible,
affordable, high performance statistics collection. In LISA ’96: Proc. of the 10th
USENIX conference on System administration, 1996.

[35] Ron Avnur and Joseph M. Hellerstein. Eddies: continuously adaptive query
processing. In SIGMOD ’00: Proc. of the 2000 ACM SIGMOD international
conference on Management of data, 2000.

[36] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In PODS ’02: Proc. of the
21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, 2002.

[37] Hari Balakrishnan, Magdalena Balazinska, Don Carney, Uǧur Çetintemel,
Mitch Cherniack, Christian Convey, Eddie Galvez, Jon Salz, Michael Stone-
braker, Nesime Tatbul, Richard Tibbetts, and Stan Zdonik. Retrospective on
aurora. The VLDB Journal, 13:370–383, 2004.

[38] G. Banga, P. Druschel, and J. Mogul. Resource containers: A new facility
for resource management in server systems. In OSDI ’99: Proc. of the 3rd
symposium on Operating Systems Design and Implementation, 1999.

[39] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP ’03: Proc.
of the 19th ACM symposium on Operating systems principles, 2003.

[40] Michael K. Bergman. The deep web: Surfacing hidden value. The Journal of
Electronic Publishing, 7(1), 2001.

[41] Pravin Bhagwat, Bhaskaran Raman, and Dheeraj Sanghi. Turning 802.11
inside-out. SIGCOMM Comput. Commun. Rev., 34:33–38, January 2004.

[42] John Bicket, Daniel Aguayo, Sanjit Biswas, and Robert Morris. Architecture
and evaluation of an unplanned 802.11b mesh network. In Mobicom ’02: Proc. of
the 11th annual international conference on Mobile computing and networking,
2005.

[43] Donna Bogatin. Yahoo searches more sophisticated and specific. http:

//blogs.zdnet.com/micro-markets/index.php?p=27, may 2006.

[44] Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting mobile commu-
nications: the insecurity of 802.11. In Mobicom ’02: Proc. of the 7th annual
international conference on Mobile computing and networking, 2001.

Bibliography 154

[45] Vladimir Brik, Shravan Rayanchu, Sharad Saha, Sayandeep Sen, Vivek Shri-
vastava, and Suman Banerjee. A measurement study of a commercial-grade
urban wifi mesh. In IMC ’08: Proc. of the 8th ACM SIGCOMM conference on
Internet measurement, 2008.

[46] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. In WWW7: Proc. of the seventh international conference
on World Wide Web 7, 1998.

[47] John Burgess, Brian Gallagher, David Jensen, and Brian Neil Levine. Maxprop:
Routing for vehicle-based disruption-tolerant networks. In IEEE INFOCOM,
2006.

[48] Vladimir Bychkovsky, Bret Hull, Allen K. Miu, Hari Balakrishnan, and Samuel
Madden. A Measurement Study of Vehicular Internet Access Using In Situ
Wi-Fi Networks. In 12th ACM MOBICOM Conf., 2006.

[49] L. F. Cabera, M. B. Jones, and M. Theimer. Herald: Achieving a global event
notification service. In Workshop on Hot Topics in Operating Systems, 2001.

[50] Joseph Camp, Joshua Robinson, Christopher Steger, and Edward Knightly.
Measurement driven deployment of a two-tier urban mesh access network. In
MobiSys ’06: Proc. of the 4th international conference on Mobile systems, ap-
plications and services, 2006.

[51] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon
Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik.
Monitoring streams: a new class of data management applications. In VLDB
’02: Proc. of the 28th international conference on Very Large Data Bases, 2002.

[52] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444–458, April 1989.

[53] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, August 2001.

[54] Uǧur Çentintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner,
Anurag S. Maskey, Alexander Rasin, Esther Ryvkina, Nesime Tatbul, Ying
Xing, and Stan Zdonik. The design of the borealis stream processing engine.
In Proc. of CIDR, 2005.

[55] Ranveer Chandra, Ratul Mahajan, Venkat Padmanabhan, and Ming Zhang.
CRAWDAD data set microsoft/osdi2006 (v. 2007-05-23). Downloaded from
http://crawdad.cs.dartmouth.edu/microsoft/osdi2006, 2007.

Bibliography 155

[56] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vi-
jayshankar Raman, Frederick Reiss, and Mehul A. Shah. Telegraphcq: Contin-
uous dataflow processing for an uncertain world. In CIDR ’03, 2003.

[57] Bor-Rong Chen, Geoffrey Peterson, Geoff Mainland, and Matt Welsh. Livenet:
Using passive monitoring to reconstruct sensor network dynamics. In DCOSS
’08, 2008.

[58] Yu-Chung Cheng. CRAWDAD data set ucsd/cse (v. 2008-08-25). Downloaded
from http://crawdad.cs.dartmouth.edu/ucsd/cse, August 2008.

[59] Yu-Chung Cheng, Mikhail Afanasyev, Patrick Verkaik, Péter Benkö, Jennifer
Chiang, Alex C. Snoeren, Stefan Savage, and Geoffrey M. Voelker. Automating
cross-layer diagnosis of enterprise wireless networks. In SIGCOMM ’07: Proc. of
the 2007 conference on Applications, technologies, architectures, and protocols
for computer communications, 2007.

[60] Yu-Chung Cheng, John Bellardo, Péter Benkö, Alex C. Snoeren, Geoffrey M.
Voelker, and Stefan Savage. Jigsaw: Solving the puzzle of enterprise 802.11
analysis. In SIGCOMM ’06: Proc. of the 2006 conference on Applications,
technologies, architectures, and protocols for computer communications, 2006.

[61] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. Gigascope: a stream database for network applications. In SIG-
MOD ’03: Proc. of the 2003 ACM SIGMOD international conference on Man-
agement of data, 2003.

[62] Matt Cutts. More webmaster console goodness. Matt Cutts: Gad-
gets, Google, and SEO (blog), http://www.mattcutts.com/blog/more-

webmaster-console-goodness/, October 2006.

[63] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized net-
work coordinate system. In SIGCOMM ’04: Proc. of the 2004 conference on
Applications, technologies, architectures, and protocols for computer communi-
cations, 2004.

[64] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI ’04: Proc. of the 6th symposium on Operating Systems
Design and Implementation, 2004.

[65] Udayan Deshpande, Tristan Henderson, and David Kotz. Channel sampling
strategies for monitoring wireless networks. In WiNMee ’06, 2006.

Bibliography 156

[66] Khaled Elmeleegy, Alan L. Cox, and T. S. Eugene Ng. Etherfuse: an ethernet
watchdog. In SIGCOMM ’07: Proc. of the 2007 conference on Applications,
technologies, architectures, and protocols for computer communications, 2007.

[67] Cristian Estan, Ken Keys, David Moore, and George Varghese. Building a
better netflow. In SIGCOMM ’04: Proc. of the 2004 conference on Applications,
technologies, architectures, and protocols for computer communications, 2004.

[68] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. The many faces of publish/subscribe. ACM Computing Surveys, 35,
June 2003.

[69] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, and K. A. Ross. Filtering
algorithms and implementation for very fast publish/subscribe systems. In
SIGMOD ’01: Proc. of the 2001 ACM SIGMOD international conference on
Management of data, 2001.

[70] Daniel Fisher. Company of the year: Nasdaq - forbes.com. http://www.

forbes.com/forbes/2009/0112/056.html.

[71] Armando Fox and Eric A. Brewer. Harvest, yield and scalable tolerant systems.
In Proc. of the 1999 Workshop on Hot Topics in Operating Systems, 1999.

[72] Chuck Fraleigh, Sue Moon, Bryan Lyles, Chase Cotton, Mujahid Khan, Deb
Moll, Rob Rockell, Ted Seely, and Christophe Diot. Packet-level traffic mea-
surements from the sprint ip backbone. IEEE Network, 17, 2003.

[73] Michael J. Freedman, Eric Freudenthal, and David Mazières. Democratizing
content publication with coral. In NSDI ’04: Proc. of the 1st USENIX sympo-
sium on Networked Systems Design and Implementation, 2004.

[74] Michael J. Freedman, Karthik Lakshminarayanan, and David Mazieres. Oasis:
Anycast for any service. In NSDI ’06: Proc. of the 3rd USENIX symposium on
Networked Systems Design and Implementation, 2006.

[75] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and Myungcheol
Doo. Spade: the system s declarative stream processing engine. In SIGMOD
’08: Proc. of the 2008 ACM SIGMOD international conference on Management
of data, 2008.

[76] B. Glade, K. Birman, R. Cooper, and R. van Renesse. Light-weight process
groups in the isis system. Distributed Systems Engineering, 1(1):29–36, Septem-
ber 1993.

[77] Google. Mountain view coverage map. http://wifi.google.com/city/mv/

apmap.html.

Bibliography 157

[78] S. Grin and L. Page. The anatomy of a large-scale hypertextual web search
engine. In WWW7, 1998.

[79] K. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating latency between
arbitrary internet end hosts. In Second Usenix/ACM SIGCOMM Internet Mea-
surement Workshop, 2002.

[80] Finn Michael Halvorsen, Olav Haugen, Martin Eian, and Stig F. Mjlsnes. An
improved attack on tkip. In NordSec, 2009.

[81] Dongsu Han, Aditiya Agarwala, David G. Andersen, Michael Kaminsky, Kon-
stantina Papagiannaki, and Srinivasan Seshan. Mark-and-sweep: getting the
”inside” scoop on neighborhood networks. In IMC ’08: Proc. of the 8th ACM
SIGCOMM conference on Internet measurement, 2008.

[82] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. Accessing
the deep web. Communications of the ACM, 50, May 2007.

[83] IEEE. Part 11: Wireless lan medium access control (mac) and physical layer
(phy) specifications. IEEE 802.11-2007, 2007.

[84] Amit P. Jardosh, Krishna N. Ramachandran, Kevin C. Almeroth, and Eliza-
beth M. Belding-Royer. Understanding link-layer behavior in highly congested
ieee 802.11b wireless networks. In E-WIND ’05, 2005.

[85] Dongmyoung Kim, Hua Cai, Minsoo Na, and Sunghyun Choi. Performance
measurement over mobile wimax/ieee 802.16e network. In WOWMOM ’08,
2008.

[86] Eddie Kohler. The Click modular router. PhD thesis, Massachusetts Institute
of Technology, 2000.

[87] David Kotz and Kobby Essien. Analysis of a campus-wide wireless network.
In Mobicom ’02: Proc. of the 8th annual international conference on Mobile
computing and networking, 2002.

[88] David Kotz, Calvin Newport, and Chip Elliott. The mistaken axioms of
wireless-network research. Technical Report TR2003-467, Dept. of Computer
Science, Dartmouth College, July 2003.

[89] Vibhore Kumar, Henrique Andrade, Buğra Gedik, and Kun-Lung Wu. Deduce:
at the intersection of mapreduce and stream processing. In EDBT ’10: Proc.
of the 13th International Conference on Extending Database Technology, 2010.

Bibliography 158

[90] Vasileios Lampos, Tijl De Bie, and Nello Cristianini. Flu detector - tracking
epidemics on twitter. In European Conference on Machine Learning and Prin-
ciples and Practice of Knowledge Discovery in Databases (ECML PKDD 2010),
pages 599–602, 2010.

[91] B. Latré, B. Braem, I. Moerman, C. Blondia, E. Reusens, W. Joseph, and
P. Demeester. A low-delay protocol for multihop wireless body area networks.
In MOBIQUITOUS ’07: Proc. of the 2007 Fourth Annual International Con-
ference on Mobile and Ubiquitous Systems: Networking & Services, 2007.

[92] S.-J Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca. Measuring band-
width between planetlab nodes. In PAM ’05: Proc. of Passive and Active
Measurement Workshop, 2005.

[93] Zhichun Li, Anup Goyal, Yan Chen, and Vern Paxson. Automating analysis of
large-scale botnet probing events. In ASIACCS ’09, 2009.

[94] H. Liu, V. Ramasubramanian, and E.G. Sirer. Client behavior and feed char-
acteristics of rss, a publish-subscribe system for web micronews. In IMC ’05:
Proc. of the 5th ACM SIGCOMM conference on Internet measurement, 2005.

[95] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
Tag: a tiny aggregation service for ad-hoc sensor networks. In OSDI ’02: Proc.
of the 5th symposium on Operating Systems Design and Implementation, 2002.

[96] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
Tinydb: an acquisitional query processing system for sensor networks. ACM
Trans. Database Syst., 30(1), 2005.

[97] Jayant Madhavan, David Ko, Lucja Kot, Vignesh Ganapathy, Alex Rasmussen,
and Alon Halevy. Google’s deep web crawl. Proc. of the VLDB Endowment, 1,
2008.

[98] Ratul Mahajan, Maya Rodrig, David Wetherall, and John Zahorjan. Analyzing
the mac-level behavior of wireless networks in the wild. In SIGCOMM ’06:
Proc. of the 2006 conference on Applications, technologies, architectures, and
protocols for computer communications, 2006.

[99] Steven McCanne and Van Jacobson. The bsd packet filter: a new architecture
for user-level packet capture. In Proc. of the USENIX Winter 1993 Conference
Proceedings, 1993.

[100] Frank D. McSherry. Privacy integrated queries: an extensible platform for
privacy-preserving data analysis. In SIGMOD ’09: Proc. of the 35th SIGMOD
international conference on Management of data, 2009.

Bibliography 159

[101] Robert B. Miller. Response time in man-computer conversational transactions.
In Proc. of the December 9-11, 1968, fall joint computer conference, part I,
1968.

[102] Andrew Moore, James Hall, Christian Kreibich, Euan Harris, and Ian Pratt.
Architecture of a network monitor. In PAM ’03: Proc. of Passive and Active
Measurement Workshop, 2003.

[103] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker, and
Stefan Savage. Inferring internet denial-of-service activity. ACM Trans. Com-
put. Syst., 24(2), 2006.

[104] Marti Motoyama, Brendan Meeder, Kirill Levchenko, Geoffrey M. Voelker, and
Stefan Savage. Measuring online service availability using twitter. In WOSN’10:
Proc. of the 3rd conference on Online social networks, 2010.

[105] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath
Babu, Mayur Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein,
and Rohit Varma. Query processing, approximation, and resource management
in a data stream management system. In CIDR ’03, 2003.

[106] Rohan Murty, Geoffrey Mainland, Ian Rose, Atanu Roy Chowdhury, Abhi-
manyu Gosain, Josh Bers, and Matt Welsh. Citysense: An urban-scale wireless
sensor network and testbed. In 2008 IEEE International Conference on Tech-
nologies for Homeland Security, 2008.

[107] Ryan Newton, Sivan Toledo, Lewis Girod, Hari Balakrishnan, and Samuel Mad-
den. Wishbone: Profile-based partitioning for sensornet applications. In NSDI
’09: Proc. of the 6th USENIX symposium on Networked Systems Design and
Implementation, 2009.

[108] Ryan R. Newton, Lewis D. Girod, Michael B. Craig, Samuel R. Madden, and
John Gregory Morrisett. Design and evaluation of a compiler for embedded
stream programs. In LCTES ’08: Proc. of the 2008 ACM SIGPLAN-SIGBED
conference on Languages, compilers, and tools for embedded systems, 2008.

[109] Vivek S. Pai, Limin Wang, KyoungSoo Park, Ruoming Pang, and Larry Peter-
son. The dark side of the web: an open proxy’s view. SIGCOMM Comput.
Commun. Rev., 34, January 2004.

[110] Jeffrey Pang, Ben Greenstein, Ramakrishna Gummadi, Srinivasan Seshan, and
David Wetherall. 802.11 user fingerprinting. In Mobicom ’02: Proc. of the 13th
annual international conference on Mobile computing and networking, 2007.

[111] Ruoming Pang, Mark Allman, Vern Paxson, and Jason Lee. The devil and
packet trace anonymization. SIGCOMM Comput. Commun. Rev., 36(1), 2006.

Bibliography 160

[112] Simon Patarin and Mesaac Makpangou. Pandora: a flexible network monitoring
platform. In Proc. of the USENIX 2000 Annual Technical Conference, 2000.

[113] Vern Paxson. Bro: a system for detecting network intruders in real-time. Com-
puter Networks, 31(23-24), 1999.

[114] Carolyn Penner. Twitter blog: #numbers. http://blog.twitter.com/2011/

03/numbers.html.

[115] David Perdew. How to track trends with twitter tools. http://goarticles.

com/article/How-To-Track-Trends-With-Twitter-Tools/4141128/.

[116] J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching for web-
based publish-subscribe systems. In Proc. of the 7th International Conference
on Cooperative Information Systems (CoopIS), 2000.

[117] Larry Peterson, Andy Bavier, Marc E. Fiuczynski, and Steve Muir. Experiences
building planetlab. In OSDI ’06: Proc. of the 7th symposium on Operating
Systems Design and Implementation, 2006.

[118] P. Pietzuch and J. M. Bacon. Hermes: A distributed event-based middleware
architecture. In 1st Workshop on Distributed Event-Based Systems, 2002.

[119] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulosand M. Welsh, and
M. Seltzer. Network-aware operator placement for stream-processing systems.
In ICDE, 2006.

[120] R. Raghavendra, P. A. K. Acharya, E. M. Belding, and K. C. Almeroth. Antler:
A multi-tiered approach to automated wireless network management. In IEEE
Conference on Computer Communications Workshops, 2008. INFOCOM, 2008.

[121] V. Ramasubramanian, R. Peterson, and G. Sirer. Corona: A high performance
publish-subscribe system for the world wide web. In NSDI ’06: Proc. of the 3rd
USENIX symposium on Networked Systems Design and Implementation, 2006.

[122] Theodore S. Rappaport. Wireless Communications: Principles and Practice
(2nd Edition). Prentice Hall PTR, 2 edition, 2002.

[123] Matthias Ringwald and Kay Rmer. Snif: A comprehensive tool for passive
inspection of sensor networks. 6. GI/ITG KuVS Fachgespräch ”Drahtlose Sen-
sornetze”. Aachen, Germany, 2007.

[124] Martin Roesch. Snort - lightweight intrusion detection for networks. In LISA
’99, 1999.

Bibliography 161

[125] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twit-
ter users: real-time event detection by social sensors. In WWW ’10: Proc. of
the 19th international conference on World wide web, 2010.

[126] B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe
notification service with quenching. In Proc. of Queensland AUUG Summer
Technical Conference, 1997.

[127] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content based
routing with elvin4. In Proc. of AUUG2K, 2000.

[128] Yong Sheng, Guanling Chen, Hongda Yin, Keren Tan, Udayan Deshpande,
Bennet Vance, David Kotz, Andrew Campbell, Chris McDonald, Tristan Hen-
derson, and Joshua Wright. MAP: A scalable monitoring system for dependable
802.11 wireless networks. IEEE Wireless Communications, 15(5):10–18, 2008.

[129] Maggie Shiels. Google admits wi-fi data collection blunder. http://news.bbc.
co.uk/2/hi/technology/8684110.stm.

[130] David Sifry. State of the blogosphere, august 2006. http://www.sifry.com/

alerts/archives/000436.html.

[131] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh, Branislav Kusy,
András Nádas, Gábor Pap, János Sallai, and Ken Frampton. Sensor network-
based countersniper system. In SenSys ’04: Proc. of the 2nd international
conference on Embedded networked sensor systems, 2004.

[132] Brett Stone-Gross, Christo Wilson, Kevin C. Almeroth, Elizabeth M. Belding,
Heather Zheng, and Konstantina Papagiannaki. Malware in ieee 802.11 wireless
networks. In PAM ’08: Proc. of Passive and Active Measurement Workshop,
2008.

[133] Michael Stonebraker and Uǧur Çentintemel. ”one size fits all”: An idea whose
time has come and gone. In ICDE ’05: Proc. of the 21st International Confer-
ence on Data Engineering, 2005.

[134] R. Strom, G. Banavar, T. Chandra, M. Kaplan, and K. Miller. Gryphon:
An information flow based approach to message brokering. In Proc. of the
International Symposium on Software Reliability Engineering, 1998.

[135] Mark Sullivan and Andrew Heybey. Tribeca: a system for managing large
databases of network traffic. In Proc. of the USENIX 1998 Annual Technical
Conference, 1998.

Bibliography 162

[136] Sonesh Surana, Rabin Patra, Sergiu Nedevschi, Manuel Ramos, Lakshmi-
narayanan Subramanian, Yahel Ben-David, and Eric Brewer. Beyond pilots:
Keeping rural wireless networks alive. In NSDI ’08: Proc. of the 5th USENIX
symposium on Networked Systems Design and Implementation, 2008.

[137] Diane Tang and Mary Baker. Analysis of a local-area wireless network. In Mobi-
com ’02: Proc. of the 6th annual international conference on Mobile computing
and networking, 2000.

[138] Erik Tews and Martin Beck. Practical attacks against wep and wpa. In WiSec
’09, 2009.

[139] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C.
Snoeren, Geoffrey M. Voelker, and Stefan Savage. Scalability, fidelity, and
containment in the potemkin virtual honeyfarm. In SOSP ’05: Proc. of the
20th ACM symposium on Operating systems principles, 2005.

[140] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-
bler, C. Barb, and A. Joglekar. An integrated experimental environment for
distributed systems and networks. In OSDI ’02: Proc. of the 5th symposium
on Operating Systems Design and Implementation, 2002.

[141] Mike P. Wittie, Brett Stone-Gross, Kevin C. Almeroth, and Elizabeth M. Beld-
ing. Mist: Cellular data network measurement for mobile applications. In
BROADNETS, 2007.

[142] B. Wong, A. Slivkins, and G. Sirer. Meridian: A lightweight network location
service without virtual coordinates. In SIGCOMM ’05: Proc. of the 2005 con-
ference on Applications, technologies, architectures, and protocols for computer
communications, 2005.

[143] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T spaces. IBM
Systems Journal, 37, July 1998.

[144] Jihwang Yeo, Moustafa Youssef, and Ashok Agrawala. A framework for wireless
lan monitoring and its applications. In WiSe ’04, 2004.

[145] Jihwang Yeo, Moustafa Youssef, Tristan Henderson, and Ashok Agrawala. An
accurate technique for measuring the wireless side of wireless networks. In
WiTMeMo ’05, 2005.

[146] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol.
RFC 4252 (Proposed Standard), January 2006.

Bibliography 163

[147] Zhen Zhang, Bin He, and Kevin Chen-Chuan Chang. Understanding web query
interfaces: best-effort parsing with hidden syntax. In SIGMOD ’04: Proc. of the
2004 ACM SIGMOD international conference on Management of data, 2004.

